

ig Gi officient **AX Image Online Tuning Guide**

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

Contents

Introduction10				
Revision Hist	ory	.11		
1 Overview		.12		
1.1 Introduc	ction	12		
1.2 Environ	ment Preparation	12		
1.2.1	Hardware Preparation	12		
1.2.2	Hardware Configuration	12		
1.2.3	Network Port Configuration	14		
1.2.4	Installing and Running Software	16		
2 Pipeline		.17		
2.1 Pipeline		17		
3 Tuning Onl	ine Modules	.19		
3.1 Ae	2,0,	19		
3.1.1	Introduction	19		
3.1.2	Interface	20		
3.1.3	Parameter	21		
3.2 AeStat	▶	46		
3.2.1	Introduction	46		
3.2.2	Interface	46		
3.2.3	Parameter	47		
3.3 Awb		49		
3.3.1	Introduction	49		
3.3.2	Interface	50		

3.3.3	Parameter	50
3.3.4	Statistical Information	87
3.3.5	Auto mode	94
3.4 AwbSta	ət	95
3.4.1	Introduction	
3.4.2	Interface	
3.4.3	Parameter	96
3.4.4	Debugging Recommendation	97
3.5 Dpc		97
3.5.1	Introduction	97
3.5.2	Interface	
3.5.3	Parameter	
3.5.4	Debugging Method	
3.5.5	Auto mode	
3.6 Blc		
3.6.1	Introduction	
3.6.2	Interface	
3.6.3	Parameter	
3.6.4	Auto mode	
3.7 Hdr		
3.7.1	Introduction	
3.7.2	Interface	
3.7.3	Parameter	
3.7.4	Auto mode	
3.8 AiNr		
3.8.1	Introduction	

	3.8.2	Interface	113
	3.8.3	Parameter	113
	3.8.4	Model Naming	116
	3.8.5	Model Integration Description	118
	3.8.6	Auto parameter	119
3.9	Scene	G	121
	3.9.1	Introduction	121
	3.9.2	Interface	121
	3.9.3	Parameter	121
	3.9.4	Debugging Steps	122
3.10) Raw2D)Nr	122
	3.10.1	Introduction	122
	3.10.2	Interface	123
	3.10.3	Parameter	124
	Debug	ging Steps	125
3.11	_ Lsc		127
	3.11.1	Introduction	127
	3.11.2	Interface	128
	3.11.3	Parameter	128
4	3.11.4	Auto mode	129
3.12	Rltm		130
	3.12.1	Introduction	130
	3.12.2	Interface	132
	3.12.3	Parameter	132
	3.12.4	Debugging Steps	148
	3.12.5	Auto mode	150

3.13 Demos	saic	151
3.13.1	Introduction	
3.13.2	Interface	
3.13.3	Parameter	153
3.13.4	Debugging Steps	155
3.13.5	Auto mode	155
3.14 Depurp	ole	156
3.14.1	Introduction	
3.14.2	Interface	
3.14.3	Parameter	
3.14.4	Debugging Steps	
3.14.5	Auto mode	
3.15 Color (Correction	
3.15.1	Introduction	
3.15.2	Interface	
3.15.3	Parameter	
3.15.4	Auto mode	
3.16 2dLut .	<u> </u>	
3.16.1	Introduction	
3.16.2	Homepage	
3.16.3	Parameter Description	
3.16.4	Auto mode	
3.17 Gamm	a	
3.17.1	Introduction	
3.17.2	Interface	
3.17.3	Parameter	

3.17.4	Auto mode	172
3.18 Dehaz	е	172
3.18.1	Introduction	172
3.18.2	Interface	173
3.18.3	Parameter	173
3.18.4	Debugging Method	174
3.19 Csc		174
3.19.1	Introduction	174
3.19.2	Interface	175
3.19.3	Parameter	175
3.20 Color /	Adjust	176
3.20.1	Introduction	176
3.20.2	Interface	
3.20.3	Parameter	176
3.21 Yuv3D	Nr	177
3.21.1	Introduction	177
3.21.2	Interface	179
3.21.3	Parameter	179
3.21.4	Debugging Steps	196
3.22 Yuv2D	Nr	202
3.22.1	Introduction	202
3.22.2	Interface	202
3.22.3	Parameter	203
3.22.4	Debugging Steps	204
3.23 Sharpe	en	206
3.23.1	Introduction	206

3.23.2 In [.]	terface	206
3.23.3 Pa	arameter	206
3.23.4 Au	uto mode	216
3.23.5 De	ebugging Steps	216
3.24 CCMP	N-	218
3.24.1 In ⁻	troduction	218
3.24.2 In ⁻	terface	219
3.24.3 Pa	arameter	219
3.24.4 De	ebugging Recommendation	220
3.24.5 Au	uto mode	220
3.25 SCM		221
3.25.1 In ⁻	troduction	221
3.25.2 In ⁻	terface	222
3.25.3 Pa	arameter	222
3.25.4 De	ebugging Recommendation	223
3.25.5 Au	uto mode	223
3.26 YCProc	\sim	224
3.26.1 In	troduction	224
3.26.2 In	terface	225
3.26.3 Pa	arameter	225
3.27 DIS		227
3.27.1 In	troduction	227
3.27.2 In ⁻	terface	227
3.27.3 Pa	arameter	228
3.27.4 De	ebugging Steps	228
3.28 ME		229

Introduction	
Interface	230
Parameter	230
Debugging Steps	231
	231
Introduction	
Interface	232
Parameter	232
Debugging Steps	233
O	233
Introduction	233
Interface	234
Parameter	234
RA CONFIDENTIAL	
	Introduction

Disclaimer

©Axera Semiconductor Co., LTD. All rights reserved.

Any use, reproduction, or distribution of this documentation without the written permission of the rights holder is strictly prohibited. Do not disseminate this documentation in any form.

Your purchase of products, services, features, etc. shall be subject to the terms and conditions in commercial contracts. All or part of the products, services, or features described in this documentation may not be available for purchase or use. Unless with an agreement in a commercial contract, the Company makes no disclaimers or warranties, expressed or implied, for the content of this documentation.

This documentation will be updated as new versions are released. Therefore, this documentation is for reference only. All statements, information, and comments in this documentation do not constitute any warranty, expressed or implied.

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

Introduction

Applied for

Intended Readers

- \succ **Technical Support**
- Software Developers \geq

Description of Symbols and Formats

AX620E series (AX63	0C and AX620Q)			
Intended Readers				
 Technical Support 	550			
 Software Develop 	ers			
Description of Syn	nbols and Formats			
Symbol/Format	Description			
xx	Stands for command lines that you can execute.			
Italic	Stands for variables. For example, the installation directory in "installation			
	directory/AX620E_SDK_Vx.x.x/build" is a variable which depends on			
	your actual environment.			
Provides additional information to emphasize or supplement important				
	points of the main text.			
! Notes:	Provides additional information that needs to pay attention to.			

Revision History

Version	Release Date	Description
V1.0	01/10/2024	Temporary version released.
V1.1	01/24/2024	Updated parameter description for each module.
V1.2	04/03/2024	Added AWB_MLC/AWB_Green/AE_FaceAE/AE_Piris.
V1.2.2	06/05/2024	Added description for HDR debugMask1.
V1.3	07/13/2024	Updated AWB_MLC & 2DLut.
V1.4	07/17/2024	Updated AWB_Green.
V1.5	08/22/2024	Updated BLC and Raw2dNr modules.
	~0	
	C C	
	25	
P		

1 Overview

12 / 234

1.1 Introduction

- Tool version: ISPTuning_V1.23.53.1
- > Offline Calibration Mode: Refer to the AX Image Calibration and Debugging Guide.
- Online Debugging Mode: Online debugging and parameter saving, confirming subjective effects through preview and snapshot.
- Common Auxiliary Tools: Basic image viewing combined with testing functionality to help analyze images.

1.2 Environment Preparation

1.2.1 Hardware Preparation

- Hardware: A standard PC is sufficient.
- Software: Windows 10 operating system.

1.2.2 Hardware Configuration

Hardware Connection

- Connect the PC to the network port of the device directly via Ethernet cable.
- > Connect to the network port of the device via local area network.

Serial Port Configuration

1. Confirm the serial port:

- a) Right-click the Windows icon.
- b) Click "Computer Management".
- c) In the "Computer Management" dialog box that pops up, expand "System Tools" and click "Device Manager".
- d) Click "Ports" on the right side of the page.

2. Configure the serial port:

Figure 1-3 Serial Port Example

2. Configure the corresponding network port IP of the motherboard via serial port: ifconfig

eth0 192.168.126.10.

3. Set the PC configuration to the same network segment as shown below.

		1
以太网 Properties	×	Internet 协议版本 4 (TCP/IPv4) Properties
letworking Sharing		General
Connect using:		You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.
This connection uses the following items:	ire	Obtain an IP address automatically
I I Microsoft 网络安白鼬	•	Use the following IP address:
☑ This could rysh 音/ sm ☑ 2 Microsoft 网络的文件和打印机共享		IP address: 192.168.126.131
☑ 🥊 QoS 数据包计划程序 ☑ 🐙 Tnfcap Packet Driver (TNFCAP)		Subnet mask: 255 . 255 . 255 . 0
☑ Internet 协议版本 4 (TCP/IPv4) □ Microsoft 网络话雷哭多路传送哭协议		Default gateway:
✓ ▲ Microsoft LLDP 协议驱动程序	~	Obtain DNS server address automatically
٢	>	Use the following DNS server addresses:
Install Uninstall Propert	ies	Preferred DNS server:
Description 传输控制协议/Internet 协议。该协议是默认的广域网	硌	Alternate DNS server:
协议,用于在不同的相互连接的网络上通信。		Validate settings upon exit Advanced
ОК	Cancel	OK Cancel

Figure 1-4 Configure IP

Tuning Server Configuration

- 1. tuning-server.ini: Configures paths for tuning XML, sensor ini, sensor so files, etc.
- 2. tuning-server.ini path: The configuration file and the tuning-server executable should be placed in the same directory.
- 3. Usage of tuning-server executable: In the directory containing the tuning-server file, execute directly ./tuning-server -p /opt/etc/"sensor name" single "sdr/hdr" offline entry.ini

For example, for the SC450AI sensor in SDR mode, the command is:

4. ./tuning-server -p /opt/etc/sc450ai_single_sdr_4lane_entry.ini

Notes

Assume tuning-server is in the /opt/bin/ directory.

Installing and Running Software 1.2.4

- 1. Install MCRInstaller.exe.
 - Recommended link for downloading the installation program: 1)

ine her

2.

2 Pipeline

17 / 234

2.1 Pipeline

Figure 2-2 MC20E_AISP_SDR_ISP Pipeline

Figure 2-5 MC20E_LCE_ISP Pipeline

3 Tuning Online Modules

3.1 Ae

3.1.1 Introduction

- Supports Auto and Manual modes; switch between them by checking or unchecking the box.
- Check "Enable AE" to view online the Gain, Exposure Time, HCG, and LCG modes of the Sensor.
- Uncheck "Enable AE" to manually adjust the Gain, Exposure Time, HCG, and LCG modes of the Sensor.

3.1.2 Interface

3.1.3 Parameter

🔤 🕸 🖬 🤸				
	👼 🕚 🚻	in Instant Preview		
 To Set1 To Set2 Load Set 	Load Set2			
Enable Auto Emosure		TinoIntornal (ne)		1000
Prove Date Made	DIV DI	AND DATE MODE	-	1000
Frame Rate Rode	FIA FF	ARE RATE RODE		
Exp Config/Status				
node		HCG	I Course	
AGain 23.8	1 (dB)	_	15872	15.500000
Sensor Total AGain			66665	65.10
DGain 0.00	(dB)		1024	1.063900
IspGain 1.53	(dB)		1221	2. 192382
System Total Gain			79506	17.64
IntegrationTime(us)			38318	38318.00
Expositio				
Laporato				
HDR				
HdrRealRatioLtoS			1024	1.0
HdrRealRatioStoVS			1024	1.0
Hdr Max Shutter (Hardware Limi	t) (us)	38320		
Real Max Shutter(us)		38320		
Alg Status				
Wearlung	94951		25,400.02	
Reinhand Rearings	24251		25,4002	
Veighted MeanLuka	30301		35.99902	
Lux	1041		1.02	
ExpVal	30465	47712	2975144.28	

- Enable Auto Exposure: Toggle switch for Auto Exposure; on for automatic exposure, off for manual exposure.
- TimeInterval(ms): Refresh time for auto exposure status, in ms. This setting is ineffective when AE is disabled.
- Mode: HCG/LCG mode.
- AGain: Analog Gain. As shown in the diagram, the values in the red box are in dB, those in the blue box are in multiples of gain, and those in the green box are 1024 times the gain (to adapt to the software interface's numerical precision, this is the actual value configured in the software). Other parameters are similar and not repeated here.

Exp Config/Status						
Mode		LCG		~		
AGain	Gain 0.00 (dB)		1024	1.000000		
DGain	0.00 (di	B)	1024	1.000000		

DGain: Digital gain.

- Sensor Total Gain: The total gain provided by the sensor. In LCG mode, Sensor Total Gain = DGain × AGain. In HCG mode, additionally multiply by the gain from HCG mode, thus: Sensor Total Gain = DGain × AGain × HcgRatio.
- > ISPGain: Digital gain provided by the ISP chip.
- System Total Gain: In LCG mode, System Total Gain = DGain × AGain × ISPGain. In HCG mode, System Total Gain = DGain × AGain × ISPGain × HcgRatio.
- IntegrationTime(us): Sensor exposure time.
- > HDR RealRatioLtoS: The exposure ratio of long to short frames in HDR mode.
- > HDR RealRatioStoVS: The exposure ratio of short to very short frames in HDR mode.
- MeanLuma: Average luminance currently measured.
- Lux: Current light level calculated.
- ExpVal: Current exposure rate. ExpVal = System Total Gain × IntergrationTime.
- ➢ Fps: Current frame rate.

Description of ALG Parameter

rategy Mode	AE ROUTE			V Tolerance	-	 5242880	5.0
ainLcg2HcgTh		6451	6.299805	AgainHcg2LcgTh		1229	1.200195
ainLcg2HcgRatio		4301	4.200195	AgainHcg2LcgRatio		4301	4. 200195
apensation Mode	Isp Dgain Compensati	tion		~ Luxk	Cali Lux K	85208	85208.00
nIspGain		1024	1.00	MaxIspGain		 32768	32.00
nUserDgain		1024	1.00	MaxUserDgain		15872	15.50
nUserTotalAgain		1024	1.00	MaxUserTotalAgain		66666	65.10
nUserSysGain		1024	1.00	MaxUserSysGain		2097152	2048.00
nInteTime		27	27.00	MaxInteTime		38320	38320.00
l tiCanSyncMode	INDEPEND MODE			✓ MultiCamSyncRatio		1048576	1.00

Figure 3-4 Description of AE General Parameter

- Strategy Mode: Exposure Strategy Mode Selection
 - Shutter Priority Mode (When the environment darkens, prioritize increasing exposure time)
 - Gain Priority Mode (When the environment darkens, prioritize increasing gain)

- Exposure Path Mode (Adjust according to exposure strategy when the environment darkens, see the Exposure Path chapter for details)
- Tolerance: SetPoint tolerance value. This is a percentage, indicating that meanluma is allowed to vary between setpoint × (1 + tolerance) and setpoint × (1 - tolerance).
- AgainLcg2HcgTh: AGain must reach this value before switching from LCG to HCG.
- > AgainHcg2LcgTh: AGain must decrease to this value before switching from HCG to LCG.
- AgainLcg2HcgRatio: Gain multiplier for HCG. When switching from LCG to HCG, divide by this value.
- AgainHcg2LcgRatio: Gain multiplier for HCG. When switching from HCG to LCG, multiply by this value, recommended to be consistent with AgainLcg2HcgRatio.
- > CompensationMode: Compensation method for AGain gear precision.
 - Again Compensatory: Use only AGain without precision compensation.
 - Dgain Compensatory: Use Dgain to compensate for AGain gear precision.
 - Ispgain Compensatory: Use ISPGain to compensate for AGain gear precision.
- Luxk: Used for calibrating Lux. For more details, refer to AX620-Image Calibration and Debugging Guide.
- > MinIspGain: Minimum limit value for ISP gain.
- MaxIspGain: Maximum limit value for ISP gain.
- MinUserDgain: Minimum limit value for digital gain.
- MaxUserDgain: Maximum limit value for digital gain.
- MinUserAgain: Minimum limit value for analog gain.
- MaxUserAgain: Maximum limit value for analog gain.
- MinInteTime: Minimum limit value for exposure time.
- > MaxInteTime: Maximum limit value for exposure time.

- Multi Cam Sync Mode: Types of multi-camera synchronization mode
 - Independ Mode: Independent mode (recommended for single camera)
 - Master Slave Mode: Dual camera synchronization mode
 - SPLIT HDR Mode: Adjust brightness based on the overlapping area of dual cameras
 - SPLICE Mode: Dual camera production line calibration mode, uses the average brightness of the primary and secondary cameras
- Multi Cam Sync Ratio: Sensitivity of AE in dual-camera setups

Description of Anti-Flicker Parameter

- FlickerPeriod: Frequency for anti-power frequency interference (100HZ/120HZ)
- > AntiFlicker Tolerance(us): Tolerance for anti-power frequency interference
- > Over Exp Mode: Anti-flicker mode for bright environments
 - LUMA PRIOR: Brightness priority, prioritizes preventing overexposure; activating this may cause flicker in bright environments
 - ANTI PRIOR: Anti-flicker priority, prioritizes flicker prevention; activating this may cause overexposure in bright environments
- Under Exp Mode: Anti-flicker mode for dark environments
 - LUMA PRIOR: Brightness priority, prioritizes preventing overexposure; activating this may cause flicker in dark environments
 - ANTI PRIOR: Anti-flicker priority, prioritizes flicker prevention; activating this may cause underexposure in dark environments

Description of ROI Parameter

Al	g Ant	i Flicke	r IRIS	S ROI	FaceA	E Exp	osure	AE Rout	e Set	Point	HDR	Luna Ve	ight	Slow Shu	utter	Time Dor	ain Smo	othing	Sleep ·	- ¥ake U	p Li	nearity T	est	Histogra	nn Ctrl
Нo	de	Disa	ble		\sim																				
F	OI Weigh	nt		_									_				_								
F	OI (x, y, v	r, h) Se	et ROI	x		0		У		0		v			0		h		0						
1	eight1										.024					1.00									
-	eight2									1	.024					1.00									
Gr	id Row								1					15											
Gr	id Colum	n												17	_										
		1		2		3		4	4	5		6		7		8		9	1	0		11		12	^
1	139	0.14	175	0.17	215	0.21	255	0.25	293	0.29	327	0.32	354	0.35	371	0.36	377	0.37	371	0.36	354	0.35	327	0.32	293
2	181	0.18	228	0.22	280	0.27	332	0.32	383	0.37	427	0.42	461	0.45	484	0.47	491	0.48	484	0.47	461	0.45	427	0. 42	383
3	226	0.22	286	0.28	350	0.34	416	0.41	479	0.47	534	0.52	578	0.56	605	0.59	615	0.60	605	0.59	578	0.56	534	0.52	479
<												1						1							<u> </u>

- ➢ Mode:
- Disable Frame Average Mode
- Grid Mode Center Weight Mode
- ROI Mode (Region of Interest Mode)
- ➢ ROI (x, y, w, h): Location and size of Area 1.
 - X and y are the coordinates of the top left corner of the screen, in pixels.
 - W and h are the width and height of the region of interest, in pixels.
- > Weight1: Weighting of the selected Area 1.
- ➤ Weight2: Weighting of areas outside the selected Area 1.

Face AE

Alg Anti-Fl	icker IRIS	ROI Fac	AE VehicleAE	Exposure	AE Route	Set Point	HDR	Luma Weight Slow Shu	tter Time	Domain Smoothing	Sleep - Wake Up	Linearity Test	Histogram (tr)
Face Roi Fact Face Target W Face Target M Face Target	or Weight Node Fixed	•	1024 410	3	1.00	0	~	No Face Frame Th To Normal AE Frame Th With Face Frame Th To Face AE Frame Th Face Weight Damp Ratio Tolerance Adjust Ratio	Ļ		20 8 3 8 870 2048	0.85	
	Ref List	Fac	e Target				^	No Face Damp Ratio	_		512	0. 50	
1 102	0.10	18432	18.00000					Face Weight		5.0 5.0			
2 1536	1.50	18432	18.00000									+	-
3 10240	10.00	18432	18.00000					Face Luma D	iff	Face Weight			^
4 51200	50.00	22528	22.00000					1 2048 2.00	0	0.00			

Figure 3-6 Face AE

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

Parameter Description

Enable: Switch for FaceAE feature, which follows the human exposure control switch on the web preview interface; tuning preview does not have human detection functionality, and modifying the Enable parameter in the tuning tool interface does not activate this feature. After modifying human exposure prevention enable on the web interface, it is necessary to reconnect the tuning tool.

Figure 3-7 Web Interface for Enabling Human Exposure Prevention

- Face Roi Factor: Statistical area for human figure box, with a range of [0, 1]. When set to 1, it calculates the luma (brightness) across the entire detection box. When set to 0.5, it calculates the luma within the lower half of the detection box.
- Face Target Weight: Weight coefficient for the face target, used to adjust the ratio between face target and normal target. The smaller this parameter, the closer the final target is to the setpoint; the larger, the closer it is to the face target.
- Face Target Mode: fixed/lux mode; if fixed is selected, the face target is fixed, if lux mode is selected, the face target is interpolated based on lux.
- Face Target: Used in fixed mode.
- Face Target List: Configured face target values for different lux segments.

- Face Ref List: Used to set the current lux value, in conjunction with the Face Target List to set different face target values.
- No Face Frame Th: Threshold for frames lost without a face; when the number of frames without a face reaches this threshold, the mode begins to switch from faceAE to normalAE. The larger this threshold, the later the switch to normalAE mode begins; the smaller, the earlier the switch starts.
- To Normal Frame Th: Threshold for the number of frames during the switch from face AE to normal AE; the larger this threshold, the longer the switching process; the smaller, the shorter the process.
- With Face Frame Th: Threshold for frames detected with a face; when the number of frames with a face reaches this threshold, the mode begins to switch from normalAE to faceAE. The larger this threshold, the later the switch to faceAE mode begins; the smaller, the earlier the switch starts.
- To Face AE Frame Th: Threshold for the number of frames during the switch from normal AE to face AE; the larger this threshold, the longer the switching process; the smaller, the shorter the process.
- Face Weight Damp Ratio: Temporal smoothing coefficient for face weight. Used to smooth the transition between different levels of face weight; the larger this value, the smoother the transition.
- Tolerance Adjust Ratio: Coefficient for adjusting AE tolerance. When switching to FaceAe and the human detection frame is consistently non-zero, this parameter can be used to increase the AE tolerance.
- No Face Damp Ratio: Temporal smoothing coefficient for face weight after the face is lost from the scene. Used to smooth the transition between different levels of face weight; the larger this value, the smoother the transition.

Face Weight List:

Configures different levels of face weight based on the difference between face luma and the overall frame's weighted mean luma.

- The smaller the face luma diff, the closer the brightness of the face area to the overall frame brightness, and the smaller the face weight.
- You can configure different effective face weight values based on different differences between face luma and overall frame weighted mean luma; generally, the larger the difference, the greater the face weight.

lg Anti F	licker IRIS	ROI Face	AE VehicleAE	E Exposure AE R	oute Set Point HDR	Luma Weight Slow Shutter	Time Domain Smoothing	Sleep - Wake Up	Linearity Test	Histogram (
Z Enable										
Priority Mod	e Defa	ault				No Vehicle Frame Th		30		
Vehicle Roi	Factor		5	512	0.50	To Normal Frame Th 🛛 🚽		15		
Vehicle Targ	et Weight		6	514	0.60	With Vehicle Frame Th		8		
Vehicle Targ	et Mode Fix	ed				To Vehicle AE Frame Th		15		
Vehicle Targ	et 🚽		8	3192	8.00	Vehicle Weight Damp Ratio		870	0.85	
					+ -	Tolerance Adjust Ratio		2048	2.00	
	Ref List	Vehi	cle Target			No Vehicle Damp Ratio	J . X	819	0. 80	
1 102	0.10	18432	18.00000			Vehicle Weight	716		+	-
2 1536	1.50	18432	18.00000	1		Vehicle Luma Diff	Vehicle Weight			^
	10,00	18432	18.00000			2 5120 5.00		_		

Figure 3-8 Face AE

- Priority Mode: When both FaceAE and VehicleAE are enabled and there are both human and vehicle detection boxes in the scene, you can choose which mode to prioritize for exposure. There are three modes available:
 - default: Both FaceAE and VehicleAE are prioritized equally.
 - > vehicle priority: VehicleAE is given priority for exposure.
 - > face priority: FaceAE is given priority for exposure.
- Vehicle Roi Factor: Statistical area for vehicle box, with a range of [0, 1]. When set to 1, it calculates the luma (brightness) across the entire detection box. When set to 0.5, it calculates the luma within the lower half of the detection box.
- Face Target Weight: Weight coefficient for the vehicle target, used to adjust the ratio between vehicle target and normal target. The smaller this parameter, the closer the final target is to the setpoint; the larger, the closer it is to the vehicle target.
- Vehicle Target Mode: Fixed/lux mode; if fixed is selected, the vehicle target is fixed, if lux mode is selected, the vehicle target is interpolated based on lux.

- Vehicle Target: Used in fixed mode.
- Vehicle Target List: Configured vehicle target values for different lux segments.
- Vehicle Ref List: Used to set the current lux value, in conjunction with the Vehicle Target List to set different face target values.
- No Vehicle Frame Th: Threshold for frames lost without a vehicle; when the number of frames without a vehicle reaches this threshold, the mode begins to switch from VehicleAE to normalAE. The larger this threshold, the later the switch to normalAE mode begins; the smaller, the earlier the switch starts.
- To Normal Frame Th: Threshold for the number of frames during the switch from Vehicle AE to normal AE; the larger this threshold, the longer the switching process; the smaller, the shorter the process.
- With Vehicle Frame Th: Threshold for frames detected with a vehicle; when the number of frames with a vehicle reaches this threshold, the mode begins to switch from normalAE to VehicleAE. The larger this threshold, the later the switch to VehicleAE mode begins; the smaller, the earlier the switch starts.
- To Vehicle AE Frame Th: Threshold for the number of frames during the switch from normal AE to vehicle AE; the larger this threshold, the longer the switching process; the smaller, the shorter the process.
- Vehicle Weight Damp Ratio: Temporal smoothing coefficient for vehicle weight. Used to smooth the transition between different levels of vehicle weight; the larger this value, the smoother the transition.
- Tolerance Adjust Ratio: An AE tolerance adjustment coefficient used when switching to VehicleAe and the vehicle detection frame is consistently non-zero, allowing for an increase in AE tolerance.
- No Vehicle Damp Ratio: Temporal smoothing coefficient for vehicle weight after the face is lost from the scene. Used to smooth the transition between different levels of vehicle weight.

Vehicle Weight List:

- Configures different levels of vehicle weight based on the difference between vehicle luma and the overall frame's weighted mean luma.
- The smaller the vehicle luma diff, the closer the brightness of the vehicle area to the overall frame brightness, and the smaller the vehicle weight.
- You can configure different effective vehicle weight values based on different differences between vehicle luma and overall frame weighted mean luma; generally, the larger the difference, the greater the vehicle weight.

Exposure Status Statistics

Figure 3-9 Description of Exposure Module

The above figure shows an exposure line chart: red represents exposure time, and blue represents Total Gain.

AE Route Parameter

40.00 1024 1.00 Exp Time 000 1000.00 1024 1.00 Gain 000 30000.00 6144 6.00 Exp Time 000 30000.00 204800 200.00 Exp Time	Exp Time(us) Gain IncrementPriority	ity
000 10000.00 1024 1.00 Gain 000 30000.00 6144 6.00 Exp Time 000 30000.00 204800 200.00 Exp Time	40 40.00 1024 1.00 Exp Time	~
000 30000.00 6144 6.00 Exp Time ~ 000 30000.00 204800 200.00 Exp Time ~	10000 10000.00 1024 1.00 Gain	~
000 30000.00 204800 200.00 Exp Time ~	30000 30000.00 6144 6.00 Exp Time	~
	30000 30000.00 204800 200.00 Exp Time	\sim
339 32939.00 225280 220.00 Exp Time ~	32939 32939.00 225280 220.00 Exp Time	~

Figure 3-10 Description of AE Route Module

As shown in the above figure, the AE Route page has several AE path points. The current node EV value determines between which two nodes (i-1, i) the current EV value lies, and obtains the exposure time and exposure parameters for the upper and lower nodes. If less than the minimum node, use the minimum node EV; if greater than the maximum node, use the maximum node EV. The "+" and "-" buttons can be used to add or delete nodes. Each node can be individually set for exposure priority or gain priority.

- Exp Time (us): Exposure time for that node \geq
- Gain: Gain for that node (total gain, including AGain, DGain, and ISPGain) \geq
- \geq Increment Priority: Growth mode for that node, where 0 represents prioritizing increase in exposure time, and 1 represents prioritizing increase in gain.
- AE Route Settings Description:
- Prerequisite: Effective only when Strategy Mode = AE ROUTE, as shown in the figure below. \geq

Strategy Mode	AE ROUTE			V Tolerance	10485760	10.0
gainLcg2HcgTh	GAIN_PRIOR			AgainHcg2LcgTh	1259	1.23
againLcg2HcgRatio	AE ROUTE	1024		AgainHcg2LcgRatio	1024	1.00
				Luxk Cali Lux K	155503	155503.00
inIspGain		1024	1.00	MaxIspGain	16384	16.00
inUserDgain		1024	1.00	MaxUserDgain	1024	1.00
inUserAgain		1024	1.00	MaxUserAgain	31282	30.55
linInteTime		29	29.00	MaxInteTime	31444	31444.00

- The exposure value of a node is the product of exposure time and gain. The exposure value of \geq nodes must monotonically increase, i.e. the exposure value of each subsequent node is greater than that of the previous node. The first node has the minimum exposure value, while the last node has the maximum exposure value.
- Setting nodes with equal exposure values is not supported. \geq
- If the exposure value increases between adjacent nodes, this can be achieved by increasing either \geq one component or both components simultaneously.
- If only a single component increases, the increased component determines the allocation strategy \geq for that segment of the route, and it needs to match the allocation strategy specified in the node (adjusting exposure time alone might lead to the failure of anti-flicker).
- If both components change simultaneously, then the allocation is done according to the strategy \geq defined in the node. To ensure normal operation of the anti-flicker feature, it is recommended to adjust the gain simultaneously with exposure time changes. The allocation strategy will determine whether to prioritize increasing exposure time or gain.
- When the anti-flicker function is enabled, it prioritizes ensuring anti-flicker operation, which \geq may result in the actual effective route differing from the set route.
- In such cases, even if an exposure time priority strategy is set, gain will be adjusted first. The \geq exposure time will only be prioritized for adjustment when the brightness change allows for the exposure time to shift from one anti-flicker stop to another.

A maximum of 16 nodes are supported, with each node having three components: exposure time, gain, and allocation strategy. Gain includes sensor analog gain, sensor digital gain, and ISP digital gain.

Take os04a10 for example.

Scenario 1: Fixed frame rate at 30fps

As the environment transitions from bright to dark, if you want to set the exposure path as follows: gain remains at 1x, exposure time increases from 20us to 10ms, then increase gain until it reaches 4x, start increasing exposure time again until it reaches 30ms, continue increasing gain up to 1054x, and finally increase exposure time until 32.939ms (maximum hardware exposure time). The exposure can be divided into the following nodes:

- 1 shutter = 20us gain = 1x
- 2 shutter = 10ms gain = 1x
- 3 shutter = 10ms gain = 4
- 4 shutter = 30ms gain = 4x
- 5 shutter = 30ms gain = 1054x
- 6 shutter = 32.939ms gain = 1054x

Node 2 can be omitted, only nodes 1 and 3 are needed, and in node 1, select Exp Time as the priority. (Situation where both components change simultaneously)

Node 4 can be omitted, only nodes 3 and 5 are needed, and in node 3, select Exp Time as the priority. (Situation where both components change simultaneously)

	Exp Time (us)	Gain	IncrementPriority
1	20	1	Exp time

The AE route you need to set would be:

2	10000	4	Exp time
3	30000	1054	Exp time
4	32939	1054	Exp time

Notes

When Anti-Flicker mode is active, as EV changes from node 2 to node 3, the actual path will prioritize increasing gain until an exposure of 20ms is permissible, then increase the exposure time to 20ms. If the set exposure path prioritizes increasing exposure time first, such as from 10 ms to 15 ms, Anti-Flicker fails. To ensure the Anti-Flicker function, the actual effective path differs from the set path.

Scenario 2: Frame rate reduction to 25fps

Assuming the frame reduction requirements are as follows:

- Without frame reduction, the exposure time reaches 39.888ms (the maximum hardware value).
- 2) When the gain exceeds 65x, start reducing the frame rate to 15fps, and continue until reaching the maximum exposure time for 15fps. At 15fps, increase the gain to 260x.
- 3) When the gain exceeds 150x, start reducing the frame rate to 5fps, and continue until reaching the maximum exposure time for 5fps. At 5fps, increase the gain to 1054x.
- 4) During this period, flicker resistance must be maintained.

Divide the exposure into the following nodes based on the requirements:

- shutter = 27us, gain = 1x, prioritize increasing exposure time. Node 1→2 needs to reach the maximum exposure time first according to the requirements, then increase gain, thus prioritize increasing exposure time.
- shutter = 39.888ms, gain = 65x, prioritize increasing exposure time (thus completing Requirement 1). To ensure flicker resistance, the gain needs to increase by more than 2x, derived from the 20ms/10ms ratio, considering the anti-flicker tolerance configuration, it is recommended to configure at least 2.5x gain for a margin.
 - When the anti-flicker function is enabled, it prioritizes ensuring anti-flicker operation,

which may result in the actual effective route differing from the set route. In such cases, even if an exposure time priority strategy is set, gain will be adjusted first. The exposure time will only be prioritized for adjustment when the brightness change allows for the exposure time to shift from one anti-flicker stop to another. If you follow the set exposure path exactly, you would experience exposure times like 11ms, 13ms, 17ms, etc., which can cause flickering.

- The maximum exposure time for 25fps hardware is 39.888ms, so the shutter is configured to 39.888ms. Configure the anti-flicker tolerance to 112us; if set to 0, the gain would increase to 32x after 30ms, then increase the exposure time to 39.888ms. After setting anti-flicker tolerance to 112us, exposure time will be prioritized up to 39.888ms before increasing gain to 65x.
- Node 2→3, according to the requirement, reduce the frame rate before increasing gain, therefore choose to prioritize increasing exposure time:

shutter = 66.489ms, gain = 260x, prioritize increasing exposure time (thus completing Requirement 2). To ensure flicker resistance, the gain needs to increase by more than 1.25x, derived from the 50ms/40ms ratio, considering the anti-flicker tolerance configuration, it is recommended to configure at least 1.5x gain for a margin.

- When the anti-flicker function is enabled, it prioritizes ensuring anti-flicker operation, which may result in the actual effective route differing from the set route. In such cases, even if an exposure time priority strategy is set, gain will be adjusted first. The exposure time will only be prioritized for adjustment when the brightness change allows for the exposure time to shift from one anti-flicker stop to another. If you follow the set exposure path exactly, you would experience exposure times like 45ms, 55ms, 57ms, etc., which can cause flickering.
- The driver cannot configure an accurate 15fps; the maximum exposure for 15fps on the 04A is 66.489ms. If set to 66.667ms, it would shift to 14fps, so it must be configured to 66.489ms to ensure the frame reduction to 15fps. To enhance flicker resistance, it is recommended to set the exposure time to an integer multiple of the power frequency (60ms), thus reducing the frame rate to 16 frames per second. Otherwise, as the environmental brightness decreases, if the exposure is maintained at 66.489ms, flickering

may occur.

4. Node $3 \rightarrow 4$, the requirement is to reduce the frame rate before increasing gain, therefore choose to prioritize increasing exposure time:

Shutter = 199.835ms, gain = 1054x (thus completing Requirement 3).

To ensure flicker resistance, the gain needs to increase by more than 1.17x, derived from 70ms/60ms ratio, considering the anti-flicker tolerance configuration, it is recommended to configure at least 1.5x gain for a margin.

- When the anti-flicker function is enabled, it prioritizes ensuring anti-flicker operation, which may result in the actual effective route differing from the set route. In such cases, even if an exposure time priority strategy is set, gain will be adjusted first. The exposure time will only be prioritized for adjustment when the brightness change allows for the exposure time to shift from one anti-flicker stop to another. If you follow the set exposure path exactly, you would experience exposure times like 88ms, 115ms, 197ms, etc., which can cause flickering.
- The driver cannot configure an accurate 5fps; the maximum exposure for 5fps on the 04A is 199.835ms. If set to 200ms, it would shift to 4fps, so it must be configured to 199.835ms to ensure the frame reduction to 5fps.

	4	Exp Time (us)	Gain	IncrementPriority
	1	27	1	Exp time
T.	2	39888	65	Exp time
	3	66489	260	Exp time
	4	199835	1054	Exp time

The AE ROUTE of the node configuration should be set as the following table shows.

If there are strict requirements for flicker resistance, the following version is more recommended: first reduce the frame rate to 16 fps, then to 5 fps.

Exp Time (us)	Gain	IncrementPriority	
---------------	------	-------------------	--
1	27	1	Exp time
---	--------	------	----------
2	39888	65	Exp time
3	60000	260	Exp time
4	199835	1054	Exp time

Description of P-IRIS Function

P-Iris, as a sub-function of the AE algorithm, is composed of a P-Iris lens and specific software control logic. The software controls the movement of the motor within the P-Iris lens to achieve precise control of the aperture.

Figure 3-12 P-Iris Mode Activation Settings

Alg	Anti Flicker IRIS ROI	FaceAE	Exposure	AE Route	Set I
Apert	cure Type P-IRIS				\sim
	FIXED TYPE				
	DC-IRIS				
	P-IRIS				
D					
X	Figure 3-13 Dynamic switching of I	P-Iris mode i	s not currently s	supported.	

! Notes:

Currently, it only supports specifying the nIrisType field as 2 in the tuning file, and then starting via the tuning-server. It does not support dynamic switching through the Aperture Type in the IRIS tab within the tuning_tool after starting the tuning-server.

P-Iris uses the AE Route table to configure the method of aperture control, as shown below:

о	Route Table E	ditor IsAeRoute					+	- ×
	Exp Ti	me(us)		Gain		Aperture	IncrementPriori	ty
1	20	20.00	1024	1.00	5	5.00	Exp Time	\sim
2	20	20.00	1024	1.00	296	296.00	Exp Time	~
3	32939	32939.00	1024	1.00	296	296.00	Exp Time	~
4	32939	32939.00	1024	1.00	512	512.00	Exp Time	~
5	32939	32939.00	2097152	2048.00	512	512.00	Exp Time	~
							R	0

Figure 3-14 P-Iris Aperture Control AE Route

Considerations for the P-Iris AE Route table are as follows:

- The exposure amount at each node, which is the product of exposure time, gain, and aperture (only effective in P-Iris mode), must be monotonically increasing. That is, the exposure amount at each subsequent node must be greater than at the previous node, with the smallest exposure amount at the first node and the largest at the last node. Nodes with equal exposure amounts are not supported.
- In P aperture mode, adjacent nodes only support an increase in one component (not more than two components changing simultaneously).
- Under P-IRIS status, the actual size of the aperture is displayed in the Exp Config/Status.

Frame Rate Mode	E MODE		×
Exp Config/Status			
Mode	LCG		
AGain 4.86 (dB)		1792	1. 750000
Sensor Total AGain		1792	1.75
DGain 0.20 (dB)		1048	1. 023438
IspGain 0.00 (dB)		1024	1.000000
System Total Gain		1834	1.79
IntegrationTime(us)		29991	29991.00
Pos		511	511.00
Exposure		0%	

Description of Target Brightness (Set Point) Parameter

- SetPointMode:
 - GainLut: Uses gain (total gain) as the reference value.

■ LuxLut: Uses lux as the reference value.

Se	tPoint Mode	LuxLUT		\sim	
Se	t Point	37209	36	3.34	
				+ –	
	R	efVal	Ş	Set Point	
1	1	0.00	30372	29.66	
2	10240	10.00	30372	29.66	
3	102400	100.00	35840	35.00	
4	2048000	2000.00	40960	40.00	

Figure 3-16 Description of Set Point Module

Stack

39 / 234

- As shown in the figure above, you can choose an automatic strategy for the target brightness (SetPoint) under different reference values (RefValue), with interpolation processing for intermediate states.
 - Fixed: Disables the automatic strategy and uses a fixed SetPoint.

	Alg ROI 1	Exposure AE R	oute Set Poi	nt HDR	Time I
	SetPoint Mode	Fixed			\sim
	Set Point	35964	35	i.12	
			+		_
		RefVal	S	et Point	
	1 1024	1.00	30372	29.66	
	2 10240	10.00	30372	29.66	
C	3 102400	100.00	35840	35.00	
	4 2048000	2000.00	40960	40.00	
05					
ter		Figure 3	-17 Fixed		
Description of HDR F	Parameter				

Alg	ROI	Exposure	AE Route	Set Point	HDR	Time Domain Smoothing	
Hdr M	ode	Fi	xed			\sim	
Fixed	Hdr Ra	tio		1024	1.00		

Figure 3-18 Module Description

In the case of an HDR sensor, you can configure the HDR ratio, which is the exposure time ratio

between long and short frames.

- > HDR Mode: Fixed for fixed ratio mode, and dynamic for dynamic ratio mode
- Fixed HDR Ratio: Exposure time ratio between long and short frames in fixed ratio mode.

Parameters in Dynamic Ratio Mode

- ▶ Refval: Lux node, supports up to 10 groups of nodes;
- > Min ratio: The minimum HDR ratio achievable under the current Lux node;
- Max ratio: The maximum HDR ratio achievable under the current Lux node;
- Short Frame Saturated Luma: Brightness threshold for short frames under the current Lux node. A lower value makes the short frame darker, better suppressing highlights; conversely, a higher value makes the short frame brighter, worsening highlight suppression. It is advised to adjust this value according to brightness changes: in bright scenes, the average brightness of short frames is high, so the threshold should be lower to prevent overexposure; in dark scenes, the average brightness of short frames is low, so the threshold should be higher to prevent the frames from being too dark;
- It is recommended to prioritize adjusting the Short Frame Saturated Luma parameter under dynamic ratio conditions.

HDR Dynamic Strategy Params:

- Suggest Min Ratio: Displays the real-time minimum exposure ratio;
- Suggest Max Ratio: Displays the real-time maximum exposure ratio;
- Short Frame Saturated Luma: Displays the real-time brightness threshold for short frames;
- Short Frame Not-saturated Area Percent: The percentage of pixels in the short frame that are not saturated in brightness. UI interface parameter range: [0, 100], 99.6 by default, recommended not to modify;
- Tolerance: The upper limit of the difference between the actual brightness of the short frame and the user-set Short Frame Saturated Luma. UI interface parameter range: [0, 100], 8 by default;
- > Converge Count Frame Num: Convergence frame count, if continuously N frames are within the

tolerance range, then it enters a converged state. UI interface parameter range: [0, 10]. Default parameter is 3 frames;

DampRatio: Temporal smoothing coefficient, the higher the value, the smoother the effect. UI interface parameter range: [0, 1], 0.9 by default.

lg Anti Flicker IRIS ROI FaceAE	Expos	sure AE	Route	Set Poir	t HDR	Luma N	eight	Slow Sh	utter I	ime I	omain S	noothing	Sleep	p – 1	Wake Up	Linea	rity Test	His	togram Ct
State Machine		Converge S	Speed Ove	r Conv	erge Spee	ed Under									-X	U			
To Fast State Luma Over Th 🚦 1536 1.50		Fast						+	-	Sl	ow			C				÷	-
To Fast State Luma Under Th 📲 819 0.80		Lur	na Diff	Ster	Factor	peed [own Fact	o s	kip Num	7	Lur	ma Diff	St	ep F	actor	peed D	own Facto) S	kip Num
To Slow State Frame Th		1 10240	10.00	51	0.05	0	0.00	0	0	1	5120	5.00	20	Ċ	0.02	0	0.00	0	0
Fo Converged State Frame Th 🗧 22		2 20480	20.00	51	0.05	0	0.00	0	0	2	10240	10.00	20		0.02	0	0.00	0	0
	-	3 30720	30.00	154	0.15	0	0.00	0	0	3	15360	15.00	20		0.02	0	0.00	0	0
		4 51200	50.00	205	0.20	0	0.00	0	0	4	20480	20.00	20		0.02	0	0.00	0	0
									<				<u>(</u> C						

Figure 3-19 Description of Time Domain Smooth

> To Fast State Luma Over Th: Threshold to enter the fast state when the scene is overexposed. When scene brightness is no less than setpoint + (To Fast State Luma Over Th × setpoint), it will enter the Fast state.

Example:

If the current setpoint is 30 and To Fast State Luma Over Th is set to 2, then when the scene brightness is 90 or higher, it will enter the Fast state.

Debugging Effect:

The smaller this value, the easier it is to enter the fast state; however, too small a value can lead to overshooting issues due to too rapid adjustments. The larger this value, the harder it is to enter the fast state; too large a value can lead to overly slow convergence.

> To Slow State Luma Under Th: Threshold to enter the slow state when the scene is underexposed. When scene brightness is no larger than setpoint - (To Slow State Luma Under Th \times setpoint), it will enter the Slow state.

Example:

If the current setpoint is 30 and To Slow State Luma Under Th is set to 0.15, then when the scene brightness is 25.5 or lower, it will enter the Slow state.

Debugging Effect:

The smaller this value, the easier it is to shift from a Converged state to a slow state; too small a value can cause flickering when fast-moving objects pass through the scene. The larger this value, the harder it is to shift from a Converged state to a slow state; too large a value can result in underexposure. Note: The tolerance must be greater than or equal to To Slow State Luma Over Th. If this condition is not met, prolonged exposure to brightness fluctuations can occur. For example, if tolerance is 10% and to slow th is 15%, adjustments will not be triggered until the variation exceeds 15%, then quickly adjust to 10%, causing a visible brightness change due to the 5% difference.

> To Slow State Frame Th: Frame threshold for entering the slow state; only when continuous N frames (N = To Slow State Frame Th) satisfy the requirements for a slow state will it enter the slow mode.

Debugging Effect:

The smaller this value, the easier it is to shift from a Converged state to a slow state; too small a value can cause flickering when fast-moving objects pass through the scene. The larger this value, the harder it is to shift from a Converged state to a slow state; too large a value can result in underexposure/overexposure.

> To Converged State Frame Th: Frame threshold for entering the Converged state; only when continuous N frames (N = To Converged State Frame Th) satisfy the requirements for a Converged state will it enter the Converged mode.

Debugging Effect:

The smaller this value, the easier it is to enter the Converged state; however, too small a value can cause slight overexposure/underexposure. The larger this value, the harder it is to enter the Converged state; too large a value can lead to stable AE, prone to flickering.

Fuzzy PID Parameters

Fuzzy PID consists of four groups of parameters: FastOver, FastUnder, SlowOver, SlowUnder.

Each group contains the following parameters: lumaDiffList, StepFactorList, SpeedDownFactorList, and SkipList. Below is the description of these four groups of parameters.

IumaDiffList:

lumaDiff = abs(setpoint - curMeanLuma) represents the difference between the current scene brightness and the target brightness. LumaDiffList is a list of differential gear positions, which should show a monotonically increasing trend. Up to 16 positions can be configured, with each position corresponding to a set of parameters. Based on the lumaDiff, determine which node (as shown below) the current setting corresponds to, and use the parameters of that node.

 Debugging suggestion: It is advised that the parameters for Under have denser positions at lower lumaDiffs compared to Over, to achieve better convergence.

StepFactorList:

StepFactor is the AE step adjustment parameter, adjusting steps as a percentage of abs(lumaDiff). The AE adjustment step between two consecutive frames equals $abs(lumaDiff) \times stepFactor$. StepFactorList is a list of AE step adjustment parameters.

Detailed parameter effects:

If the current difference between scene brightness and target brightness is 40:

If stepFactor is set to 0.2, the next frame will adjust the scene brightness to curMeanLuma + $lumaDiff \times 0.2$, i.e., nextFrameMeanLuma = curMeanLuma + 8;

If stepFactor is set to 0.5, the next frame will adjust the scene brightness to curMeanLuma + $lumaDiff \times 0.5$, i.e., nextFrameMeanLuma = curMeanLuma + 20;

If stepFactor is set to 1, the next frame will adjust to curMeanLuma + lumaDiff \times 1, i.e., nextFrameMeanLuma = curMeanLuma + 40;

The larger this value, the faster the AE convergence speed. However, if this value is too large, it can easily lead to overshooting. Conversely, the smaller this value, the slower the convergence speed.

Tuning advice: It is recommended to increase StepFactor as lumaDiff increases, to speed up convergence in scenes with large brightness differences. It is advisable to configure Fast to converge faster than Slow and set Under to converge slower than Over to match subjective perceptions better.

SpeedDownFactorList:

SpeedDownFactor is the AE slowdown parameter, reducing steps as a percentage of lumaSpeed, where lumaSpeed = preFrameMeanLuma - curMeanLuma. The slowdown step between two consecutive frames is lumaSpeed \times stepFactor. SpeedDownFactorList is a list of AE slowdown parameters.

Detailed parameter effects:

If the scene is underexposed and the brightness continues to increase, the AE adjustment direction is correct, but the speed is too fast, leading to overshooting. Speed Down Factor can prevent overshooting.

If the scene is overexposed and the brightness continues to decrease, the AE adjustment direction is correct, but the speed is too fast, leading to overshooting. Speed Down Factor can prevent overshooting.

If the current state is underexposure and the scene brightness continues to decrease, there are generally two scenarios:

Early Stages of Environmental Change: This occurs in the first few frames when the environment begins to change, and the AE has not yet had time to respond. The Speed Down Factor can be used to quickly adjust as soon as the environmental change starts.

Overshoot: If overshooting has occurred, the Speed Down Factor can help alleviate the overshooting phenomenon.

If the current state is overexposure and the scene brightness continues to increase, there are generally two scenarios:

Early Stages of Environmental Change: This occurs in the first few frames when the environment begins to change, and the AE has not yet had time to respond. The Speed Down Factor can be used to quickly adjust as soon as the environmental change starts.

Overshoot: If overshooting has occurred, the Speed Down Factor can help alleviate the overshooting phenomenon.

When stepFactor is 0:

If SpeedDownFactor is set to 0.2, the next frame will adjust the scene brightness to curMeanLuma + lumaSpeed \times 0.2, i.e., nextFrameMeanLuma = curMeanLuma - 8;

If SpeedDownFactor is set to 0.5, the next frame will adjust the scene brightness to curMeanLuma + lumaSpeed \times 0.5, i.e., nextFrameMeanLuma = curMeanLuma - 20;

If SpeedDownFactor is set to 1, the next frame will adjust to curMeanLuma + lumaSpeed × 1, i.e., nextFrameMeanLuma = curMeanLuma - 40.

Debugging Effect:

The larger this value, the more obvious the slowing effect. Inappropriate slow-down parameters can lead to incorrect AE adjustment directions.

- Tuning advice: When luma diff is small, and step factor is low, AE adjusts slowly, and there is no need to reduce speed; in fact, reducing speed might cause AE to adjust in the wrong direction, so it's suggested to configure the speed down factor to 0.
- When luma diff is large, typically at the start of sudden environmental changes where brightness quickly deviates from the set point, or after a few frames of a white screen where continuous large steps can lead to overshooting, it may be necessary to slightly increase the speed down factor to adjust AE quickly or prevent overshooting.
 - Skip Num:

Skip is the AE frame skipping parameter. A value of 1 means that exposure parameters are adjusted every 2 frames, and so on.

Debugging Effect:

The larger this value, the less smooth the AE convergence, resulting in a more noticeable stepped appearance.

Tuning advice: At Skip=1, if you closely observe the convergence process, you might notice slight step-like changes in brightness, so it is recommended to keep skip at 0. Only consider using skip to temporarily circumvent issues such as delayed AE statistics or late effectiveness of sensor again shutter.

3.2 AeStat

3.2.1 Introduction

The AeStat module primarily configures the intervals for AE statistical information. Under normal circumstances, it is advisable to use the default configuration, and adjustments are not recommended.

Interface 3.2.2

O ISPTuning - V1.24.4.1 AX620E [192.168.1.185:8082] File Tool Help ٥ × 🟠 🕹 👬 🖻 🛎 🛋 🤸 🖸 pipe (🗸 📲 📑 👼 🕥 🌇 🖬 🗹 Instant Preview Sensor
Image
Register
Scene
Ae
AeStat
Awb
AwbStat
Af
Af To Set1 To Set2 Load Set1 Load Set2 🗹 Pre Hdr Enable 🗌 Pst Hdr Enable 🖂 ISP Gain Enable Import Export Pst HDR Position After W Pre HDR 0 Position Pre HDR 1 Position ITP ITP Skip Num 0: no frame skip Grid Hist Hist Mode Hist Y Coeff AfStat RGGB(4ch) ∨ Linear Hist Bin Num 256 Pocume
 Pocume 0.25 R 1024 GR • 1024 0.25 GB . 1024 0.25 в 1024 0.25 • Range [0, 4095] Hist Roi 8.0 2144.0 0.0 Hist Roi Offset H Hist Roi Offset V 3840 Hist Roi Width Hist Roi Height Hist Weight 12 11 13 1 1 2 1 1 3 1 1 4 1 5 1 6 1 Nuc
 LDC 0 🔵

Figure 3-21 AeStat Interface 2

3.2.3 Parameter

AeStat						
Parameter	Description	Range				
Pre Hdr Enable	Switch for statistics before the HDR module	0, 1				
Pst Hdr Enable	Switch for statistics after the HDR module	0, 1				
ISP Gain Enable	Whether to multiply statistics by ISP gain	0, 1				
Pst HDR Position	Position of statistics after the HDR module	After WBC				
	Position of statistics for long frames before the HDR					
Pre HDR 0 Position	module	ITP				
	Position of statistics for long frames before the HDR					
Pre HDK I Position	module	ITP				
	0:no frame skip	0, 1, 2				
Skip Num	1: 1/2 frame skip					
	2: 1/2 frame skip					
	Grid					
	Grid Config 0: AE Algo					
Grid Mada	Y (1ch)	\				
	RGGB(4ch)	\				

Roi Offset H	Horizontal offset of the statistical region	0~3839					
Roi Offset V	Vertical offset of the statistical region	0~2159					
Roi Region Num H	Number of horizontal grids in the statistical region	1~72					
Roi Region Num V	Number of vertical grids in the statistical region	1~54					
Roi Region W	Width of each statistical grid	16~512					
Roi Region H	Height of each statistical grid	2~512					
Red Thr	Statistical threshold of the R channel	0~65536					
Green.R Thr	Statistical threshold of the GR channel	0~65536					
Green.B Thr	reen.B Thr Statistical threshold of the GB channel						
Blue Thr	Blue Thr Statistical threshold of the B channel						
	Flicker Detect						
Crid Mada	Y (1ch)	\					
Grid Mode	RGGB(4ch)	\					
Roi Offset H	Horizontal offset of the statistical region	0~3839					
Roi Offset V	Vertical offset of the statistical region	0~2159					
Roi Region Num H	Number of horizontal grids in the statistical region	1~8					
Roi Region Num V	Number of vertical grids in the statistical region	1~512					
Roi Region W	Width of each statistical grid	16~512					
Roi Region H	Height of each statistical grid	256~1024					
Y Thr	Statistical threshold of the Y channel	0~65536					
	Grid Y Coeff						
R	Statistical coefficient of the R channel	0~1					
GR	Statistical coefficient of the GR channel	0~1					
GB	Statistical coefficient of the GB channel	0~1					
В	Statistical coefficient of the B channel	0~1					
	Hist						
	Y (1ch)						
Hist Mode	YRGB(4ch)						
L	RGGB(4ch)						
Linear Hist Bin Num	Number of bins in the linear histogram	256/512/1024					
X	Hist Y Coeff						
R	Statistical coefficient of the R channel histogram	0~1					
GR	Statistical coefficient of the GR channel histogram	0~1					
GB	Statistical coefficient of the GB channel histogram	0~1					
В	Statistical coefficient of the B channel histogram	0~1					
	Hist Roi						
Hist Roi Offset H	Horizontal offset of the statistical region in the histogram	0~3839					
Hist Roi Offset V	Vertical offset of the statistical region in the histogram	0~2159					

Hist Roi Width	Width of the histogram statistical region	0~3840
Hist Roi Height	Height of the histogram statistical region	0~2160
Hist Weight Lut	Statistical weight of each block in the histogram	0~255

Notes

The AeStat module primarily configures the intervals for AE statistical information. Under normal circumstances, it is advisable to use the default configuration, and adjustments are not recommended.

3.3 Awb

3.3.1 Introduction

XERA

- > Supports Auto and Manual modes; switch between them by checking or unchecking the box.
- When "Enable Auto White Balance" is checked, it allows real-time viewing of the values for R-Gain, G-Gain, and B-Gain.
- If "Enable AWB" is unchecked (Manual mode), you can manually adjust the gain values for the R, Gr, B, and Gb channels.
- * "Auto Refresh Interval," when selected, displays the AWB log in real-time on the Statistics page; the log refresh time can be set.

3.3.2 Interface

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

AWB parameters and strategies are located in the Parameters option box. They are divided into several sections: General, GrayZone, LuxWeight, LumaWeight, MixLight, Dominant, Fusion, Preference, ROI, and Green. The Statistics interface also includes the MLC strategy.

Strategy	Introduction Overview
Advanced Gray World	Compared to the basic Gray World, this includes five sub-strategies for more refined probability and preference control:
	Lux Weight, Luma, Dominant, MixLight, and Locus.
	Final Weight = Lux Weight × Luma Weight × Dominant Weight × MixLight Weight
	After obtaining the Final Weight, the weights of various statistical white points are
	known. After the weighting, the decision point is obtained. The decision point, after
	being adjusted by the Locus strategy, becomes the decision point for the advanced gray
	world.
Smoothing Strategy	Uses historical frames to smooth the white balance results to prevent flickering and abrupt changes.
Projection Strategy	To prevent color shifts in outdoor daylight, when the result of the Gray World algorithm falls to the left of the Planckian curve under high brightness, the result is projected onto the Planckian curve.
	Example: In outdoor daylight scenarios with an excess of green grass and trees and
TER.	insufficient gray blocks, this feature can be activated to improve the purple-red tint in the image.
Illuminance Strategy	In different illuminance environments, the probability of gray objects appearing at
	various positions within the gray zone follows a certain pattern.
	Lux Weight indicates the probability of a block being a gray object under the current Lux.
Light and Dark Area	In typical indoor or outdoor scenes, windows with low Luma values may have noise, causing the r/g, b/g ratios to be less accurate than in brighter areas. Moreover, black

Preference Strategy	objects are not sensitive to color shifts, so a very low weight can be set. Additionally,
	overexposed areas may also have distorted r/g, b/g ratios, or non-white blocks like blue
	sky, so should also be assigned low weights.
	In dark scenes, where exposure may be maximized yet the image remains dark, many
	pixels are concentrated at low Luma levels, so a certain Luma weight is necessary to
	prevent AWB jumps.
Multi-Color	Each statistical window has its own estimated color temperature. The standard deviation
Temperature	of color temperature can measure the dispersion of color temperature across windows,
Preference Strategy	thereby assessing the probability of multiple color temperatures. The higher the multi-
	color temperature probability, the more severe the saturation attenuation. If a multi-
	color temperature scene is identified, different color temperature preferences can be
	configured for different brightness scenarios.
Dominance	Mainly used to improve accuracy during objective testing, this strategy excludes
Preference Strategy	interference from non-gray blocks in color cards when a dominant gray block is present.
	In scenarios like park monitoring, it also helps to exclude slight color changes in the
	background of the road caused by pedestrians in blue or yellow clothes entering and
	exiting.
Decision Point	Based on the weights and confidence of each Predictor, the decision points of each
Fusion	Predictor are fused.
Anchor Point	A strategy that directly predicts decision points based on Lux. Spatial refers to the R/G,
Strategy	B/G space.
	Example: In extremely bright environments where sunlight predominates, the spectrum
Ŧ	and color temperature of sunlight are relatively fixed, allowing direct prediction of
	decision points. In outdoor scenarios with extensive blue sky and greenery where white
	objects are scarce, this decision point can provide a stable anchor.
Preference Strategy	Mainly used to adjust AWB according to your preferences, such as making low color temperature white blocks appear slightly yellow, more in line with human vision.

	Before adjusting preferences, ensure that the Fusion result can make white appear white, and do not attempt to solve the color shift problems of Fusion through preference adjustments, as this can lead to color shifts in other scenarios.
Green Zone Dynamic Segmentation Strategy	Excludes statistical points from green plants or green objects to prevent them from being miscounted as valid points, leading to AWB errors.
MLC Strategy	Excludes points that are likely to cause miscounting, such as indoor yellow objects or outdoor blue sky, retaining only valid gray points to improve statistical accuracy.

Description of ALG General Parameter

Smoothing Strategy

Damp Ratio: White balance convergence speed. The closer to 0.0, the faster the convergence; the \geq larger the value, the slower the convergence. Convergence Time in Seconds = [1/(1 - 1)]dampRatio)]/Frame Rate. For example, at a frame rate of 25 frames per second and a dampRatio of 0.99, the convergence time is 4 seconds = $\left[\frac{1}{(1 - 0.99)}\right]/25$.

- Tmpo Stab Trigger Weight: If the number of white blocks falling into the white zone is less than this value, the white point will not be changed. This means that the results from the current frame's gray world will not be used, and the decision point will remain based on the results when there are sufficient white points, preventing overall color changes due to intermittent presence of white points.
- Tolerance R/G: Changes to the White Balance Controller (WBC) hardware are made only when the current R/G ratio differs from the previous frame's R/G ratio by more than this threshold.
- Tolerance B/G: Changes to the WBC hardware are made only when the current B/G ratio differs from the previous frame's B/G ratio by more than this threshold.

Algorithm System

White balance differentiates scenes based on current illuminance (Lux). Currently supports distinction among eight types of scenes. The differentiation criteria are as follows:

Lux Type	L	ux Start		.ux End
VeryDark	0	0. 00	8192	8.00
Dark	10240	10.00	51200	50.00
Indoor	61440	60.00	09600	400.00
Transition Indoor	60800	450.00	72800	950.00
Transition Outdoor	24000	1000.00	94400	1850.00
Outdoor	45600	1900.00	44800	3950.00
Bright	96000	4000.00	37600	9900.00
VeryBright	40000	10000.00	-	

Figure 3-25 Scene

VeryDark:

Lux Start: Starting Lux value for the VeryDark illuminance level.

Lux End: Ending Lux value for the VeryDark illuminance level.

➤ Dark:

Lux Start: Starting Lux value for the Dark illuminance level. Lux End: Ending Lux value for the Dark illuminance level.

➤ Indoor:

Lux Start: Starting Lux value for the Indoor illuminance level.

Lux End: Ending Lux value for the Indoor illuminance level.

Transition Indoor:

Lux Start: Starting Lux value for the Transition Indoor illuminance level

stack

55 / 234

Lux End: Ending Lux value for the Transition Indoor illuminance level.

Transition Outdoor:

Lux Start: Starting Lux value for the Transition Outdoor illuminance level.

Lux End: Ending Lux value for the Transition Outdoor illuminance level.

Outdoor:

Lux Start: Starting Lux value for the Outdoor illuminance level.

Lux End: Ending Lux value for the Outdoor illuminance level.

Bright:

Lux Start: Starting Lux value for the Bright illuminance level. Lux End: Ending Lux value for the Bright illuminance level.

VeryBright:

Lux Start: Starting Lux value for the VeryBright illuminance level.

Multi Camera Sync Mode

Not Sync

Figure 3-26 Dual-camera Synchronization Mode

Multi Camera Sync Mode: Dual camera synchronization mode. When set to "Not Sync", each camera performs white balance calculations independently. When set to "Sync", the two cameras work together to calculate white balance.

Gray Zone Division and Projection Strategy (GrayZone) Parameter Description

Gray Zone Division:

Gray Zone Split	Cct Th	reshold	
Inner Min CCt	2300	2300	
Inner Max CCt	7800	7800	0
Outer Min CCt	1950	1950	
Outer Max CCt	10000	10000	
H to A	2800	2800	
A to F	3300	3300	
F to D5	4600	4600	
D5 to D6	5600	5600	
D6 to Shade	6600	6600	

Figure 3-27 Gray Zone

The Gray Zone interface is divided into 24 small zones, along with several independent light sources. The parameters mentioned can adjust the shape of the gray zone as follows:

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

During the debugging process, indoor light generally falls in Zone 1 (H.1 A.1 F.1 D5.1 D6.1 S.1). Extremely dark scenes may exhibit some degree of purple drift, which can be covered by Zone 4.

Projection Strategy

Planckian Locus Project in High Lux Scene		
Enable		
Not Project Lux	4096000	4000.00
Full Project Lux	10240000	10000.00

Figure 3-30 Interface

- Enable: Strategy switch \triangleright
- \triangleright Not Project Lux: Below this Lux level, no projection is performed.
- Full Project Lux: Above this Lux level, full projection is performed. \triangleright

Between these levels, interpolation projection is applied. The figure below shows the state of the gray zone with no projection, interpolation projection, and full projection.

Figure 3-31 Projection Strategy

															S	cenaric
Zones	Ver	yDark	D	ark	Ind	loor	Transiti	on Indoor	Transitio	n Outdoor	Out	door	Bri	ight	Very	Bright
H.1	1000	1000	1000	1000	1000	1000	200	200	50	50	0	0	0	0	0	0
H.2	1000	1000	1000	1000	700	700	400	400	400	400	100	100	100	100	100	100
H.3	1000	1000	1000	1000	700	700	400	400	400	400	100	100	100	100	100	100
4.4	1000	1000	500	500	0	0	0	0	0	0	0	0	0	0	0	0
A.1	1000	1000	1000	1000	700	700	200	200	50	50	0	0	0	0	0	0
A.2	1000	1000	1000	1000	700	700	400	400	400	400	100	100	100	100	100	100
A.3	1000	1000	1000	1000	700	700	400	400	400	400	100	100	100	100	100	100
A. 4	1000	1000	500	500	0	0	0	0	0	0	0	0	0	0	0	0
5.1	1000	1000	1000	1000	1000	1000	200	200	50	50	0	0	0	0	0	0
.2	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	800	800	800	800	800	800
F.3	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	800	800	800	800	800	800
F.4	200	200	10	10	0	0	0	0	0	0	0	0	0	0	0	0
D5.1	1000	1000	1000	1000	1000	1000	800	800	200	200	100	100	100	100	100	100
D5.2 Small	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
D5.3 Gray	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
D5.4	200	200	10	10	0	0	0	0	0	0	0	0	0	0	0	0
D6.1	1000	1000	1000	1000	1000	1000	800	800	200	200	100	100	100	100	100	100
D6.2	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	900	900	800	800
D6.3	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	900	900	800	800
D6.4	200	200	10	10	0	0	0	0	0	0	0	0	0	0	0	0
5.1	300	300	300	300	300	300	300	300	200	200	100	100	100	100	100	100
ILLUMs	Ver	vDark		ark	Ind	loor	Transiti	on Indoor	Transitio	n Outdoor	Out	door	Bri	iaht	Verv	Bright
CWF	1000	1000	1000	1000	1000	1000	200	200	50	50	0	0	0	0	0	0
					<u> </u>											Waia

Illuminance Strategy (LuxWeight) Parameter Description

Figure 3-32 LuxWeight

The Illuminance Strategy allows for the adjustment of gray zone weights in different brightness scenarios, enhancing the adaptability of white balance across scenes.

- The red box indicates the scene, and scene differentiation can refer to the "General Parameters" description.
- The green area represents the corresponding scene, where the weight of the statistical blocks falling into the small gray zone is indicated. Weights range from 0 to 1000.

Weights can be modified based on actual tuning experience. Examples:

As indicated by the yellow box: In clear outdoor daylight (VeryBright scene), the weights for H.1-H4 A.1-A4 can be appropriately reduced because high-intensity sunlight rarely falls

in the H and A zones. This adjustment can increase the accuracy of white balance for this scene.

- As shown in the orange box: In low-light scenes, where white points under low illuminance can exhibit purple drift, increasing the weight of the X.4 area can effectively prevent the image from turning purplish-red.
- As illustrated by the cyan box: Artificial light, compared to natural light, is closer to Zone 1. Therefore, for indoor scenes compared to outdoor scenarios, the weight of the X.1 area can be set higher to reflect this.

Brightness and Darkness Preference Strategy (LumaWeight) Parameter Description

		1						(
Lum	a Weight Params							\nearrow	Segr	ments							
_			1		2		3 4		4	5		6			7		8
	Luma Split	51	0.05	819	0.80	3072	3.00	8192	8.00	20480	20.00	40960	40.00	92160	90.00	215040	210.00
	VeryDark	512	0.50	512	0.50	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	820	0.80
	Dark	205	0.20	205	0. 20	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	820	0.80
	Indoor	0	0.00	0	0.00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80
Weight	Transition Indoor	0	0.00	0	0. 00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80
weight	Transition Outdoor	0	0.00	0	0.00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80
	Outdoor	0	0.00	0	0.00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80
	Bright	0	0. 00	0	0.00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80
	VeryBright	0	0.00	0	0.00	0	0.00	512	0.50	1024	1.00	1024	1.00	1024	1.00	820	0.80

Figure 3-33 LumaWeight

In a scene, there are bright and dark areas. This strategy allows selection of which brightness areas in white balance statistics have a more significant impact. For example, in a typical outdoor scene, windows with low Luma values might have noise, causing inaccurate r/g, b/g ratios compared to brighter areas. Moreover, black objects are less sensitive to color shifts, so a lower weight can be assigned. Correspondingly, the weights for mid to high brightness areas can be freely adjusted as needed.

Figure 3-34 Debugging the Brightness and Darkness Area Strategy

Brightness and darkness are divided into eight levels. Threshold values between levels are configured in the Luma Split section, as shown in the orange box in the diagram above, and the weight configurations for bright and dark areas in different scenes are shown in the blue box. The meaning of parameters in the Statistics section are as follows:

- YTh: Brightness division threshold, corresponding to the number in the orange box in the diagram.
- YWt: Weight under that brightness, the higher the value, the higher the weight, corresponding to the number in the blue box.
- YCnt: Number of statistical points under that brightness.

Multi-Temperature Preference Strategy (MixLight) Parameter Description

Mix Light	Enable																		
			Very	Dark		Dark		Indoor	Tr	ansition	Indoor	Transit	ion Outdo	or O	utdoor		Bright	Ve	ryBright
roba 0%	CCT Std	45	0	450	450	450	400	400	45	0 4	150	600	600	9998	9998	9998	9998	9998	9998
roba 100%	CCT Std	75	0	750	750	750	600	600	80	۶ ٥	300	1000	1000	9999	9999	9999	9999	9999	9999
roba 100%	CCM Saturation Discour	nt 10	0	100	100	100	100	100	10	0	100	100	100	100	100	100	100	100	100
Mi	vi ight Parame										Segmen	ts					XC		
Mi	xLight Params	1			2			2		4	segmen	5		6		C			
	CCT List	2300	2300	28	00 280	00 3	500	3500	4600	4600	55	00 5	5500	6500	500	7500	7500	8500 8	3500
	VeryDark	820	0.8	0 82	0 0.	80 8	20	0.80	1024	1.0	0 10	24	1.00	820	0. 80	205	0.20	102	0.10
	Dark	614	0.6	0 61	4 0.	60 6	14	0.60	1024	1.0	0 10	24	1.00	820	0.80	307	0.30	102	0.10
	Indoor	205	0.2	0 20	5 0.	20 3	:07	0.30	820	0.8	0 10	24	1.00	820	0.80	410	0.40	102	0.10
Weight	Transition Indoor	205	0.2	0 20	5 0.	20 4	10	0.40	922	0.9) 10	24	1.00	820	0.80	307	0.30	102	0.10
Treight	Transition Outdoor	307	0.3	0 30	7 0.	30 5	12	0.50	1024	1.0	0 10	24	1.00	820	0.80	205	0.20	102	0.10
	Outdoor	1024	1.0	0 10	24 1.	00 1	024	1.00	1024	1.0) <mark>10</mark>	24	1.00	1024	1.00	1024	1.00	1024	1.00
	Bright	1024	1.0	0 10	24 1.	00 1	024	1.00	1024	1.0	0 10	24	1.00	1024	1.00	1024	1.00	1024	1.00
	VeryBright	1024	1.0	0 10	24 1.	00 1	024	1.00	1024	1.0	0 10	24	1.00	1024	1.00	1024	1.00	1024	1.00

Figure 3-35 MixLight

Multi-temperature preference strategy calculates the standard deviation of color temperature through statistics, ultimately outputting multi-temperature preference weights and supporting attenuation of mixed light saturation. The strategy is as follows:

Figure 3-36 Multi-Color Temperature Preference Strategy

Adjustments to the corresponding environmental settings of proba 0% CCT Std and proba 100% CCT Std can influence the multi-temperature probability.

Figure 3-37 Multi-Temperature Probability Calculation

 Saturation attenuation calculation is shown in the figure below; modifying proba 100% CCM Saturation Discount can affect the Sat Discn (saturation attenuation value) and subsequently the CCM saturation:

Figure 3-38 Saturation attenuation calculation:

Multi-color temperature preference can be adjusted under any brightness scenario. For example, reducing the low-temperature weight in indoor scenes (shown in the green box) can help avoid color shifts caused by yellow objects.

									Segr	nents								
MI	xLight Params		1		2		3		4		5		6		7		8	
	CCT List	2300	2300	2800	2800	3500	3500	4600	4600	5500	5500	6500	6500	7500	7500	8500	8500	色温
	VeryDark	820	0.80	820	0.80	820	0.80	1024	1.00	1024	1.00	820	0.80	205	0.20	102	0.10	权重
	Dark	614	0.60	614	0.60	614	0.60	1024	1.00	1024	1.00	820	0.80	307	0.30	102	0.10	1
	Indoor	205	0.20	205	0.20	307	0.30	820	0.80	1024	1.00	820	0.80	410	0.40	102	0.10	1
	Transition Indoor	205	0.20	205	0.20	410	0.40	922	0.90	1024	1.00	820	0.80	307	0.30	102	0.10	1
weight	Transition Outdoor	307	0.30	307	0.30	512	0.50	1024	1.00	1024	1.00	820	0.80	205	0.20	102	0.10	1
	Outdoor	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1
	Bright	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1
	VeryBright	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	1024	1.00	

Figure 3-39 Multi-Color Temperature Preference Debugging

Dominant Preference Strategy (Dominat) Parameter Description

Dominant Weight Params	2	one H		Zone A	:	Zone F	-	Zone D
Enable	\checkmark		\checkmark		\checkmark		\checkmark	
Min Cct Thresh	2000	2000	2500	2500	3300	3300	4600	4600
Max Cct Thresh	2500	2500	3300	3300	4600	4600	8500	8500
Dominant to All Ratio Thresh	1024	1.00	1024	1.00	1024	1.00	1024	1.00
Dominant to Minor Ratio Thresh	409	0.40	409	0.40	409	0.40	409	0.40
Minor Weight	0	0.00	0	0.00	0	0.00	0	0.00
Smooth Percentage	204	0.20	204	0.20	204	0.20	204	0.20

Dominant Area Drawing:

- Enable: Whether the dominant area is enabled, up to four areas can be configured: Zone H, A, F, D
- Min Cct Thresh: Lower boundary of the dominant area
- Max Cct Thresh: Upper boundary of the dominant area

Each of the four dominant areas can be independently configured. For example, the dominant boundaries for Zone F are shown below.

Figure 3-42 Four Dominant Areas

Dominant Logic:

Taking Zone F for example, all grey areas (ALL) are divided into dominant (Dominant) and nondominant areas (Minor).

Figure 3-43 Dominant and Minor Areas

The smaller of the two calculated dominant probabilities, Dominant Probability 1 and Dominant

Probability 2, is taken as the final dominant probability.

The higher the Dominant to All Ratio Thresh and Dominant to Minor Ratio Thresh, the harder it is to be classified as having a high dominant probability. The higher the Smooth Percentage, the better the interpolation smoothing effect. Parameter debugging for calculating dominant probability 1 and 2 is shown below.

Figure 3-44 Dominant Probability 1 and 2 Calculation

The calculation method for dominant preference weights is shown in the diagram. The higher the Minor Weight, the less effective the dominant strategy.

dó MERA

Figure 3-45 Dominant Preference Weight Calculation

AFERAC

			Spatial	Preditor Params				
No	Lux Sta	rt	Lux End	I	R/G		B/G	4
1	096000	4000.00	240000	10000.00	488636	0.466	636485	0.607
2	264000	11000.00	000000	1000000.00	622854	0.594	615514	0.587
		Confidence Par	ams of Pi	reditors			5	
Gray Zone Confidence ()% Avera	ge Weight	20		20.0			
Gray Zone Confidence 1	00% Ave	erage Weight	500		500.0			
Spatial Confidence 0% I	ux		5120000)	5000.0	2-		
Spatial Confidence 1009	6 Lux		1536000	0	15000.0		D.	
Fusio	n Weight	ts of Preditors				/		
Gray Zone Weight		1024	1.00					
Spatial Preditor Weight		0	0.00					
			$\overline{\mathbf{v}}$					
General GrayZone	LuxWei gh	t LumaWeight	MixL	ight Dominan	t Fusion	Prefere	nce	
		X	~0					
	(
			Figu	re 3-46 Inte	rface			

Decision Point Fusion (Fusion) Parameter Description

Algorithm logic:

Figure 3-47 Decision Point Fusion Flowchart

Anchoring decision point calibration:

			Spatial	Preditor Params				
No	Lux Sta	rt	Lux End		R/G		B/G	
1	096000	4000.00	240000	10000.00	488636	0.466	636485	0.607
2	264000	11000.00	000000	1000000.00	622854	0.594	615514	0.587

Figure 3-48 Anchoring Decision Point Calibration

Different brightness intervals can calibrate different anchoring decision points, using linear interpolation for differentiation.

For illuminance levels below the minimum, calculations are based on the minimum illuminance's anchoring decision point. For example, as shown above, No 1: 4000-10000 uses anchoring decision points 0.47 and 0.61. For environments with less than 4000 lux, the same anchoring decision points are used.

Similarly, for temperatures above the highest calibrated color temperature, the anchoring decision points of the highest calibrated temperature are used.

Confidence Calculation

Confidence Params of Preditors		
Gray Zone Confidence 0% Average Weight	20	20.0
Gray Zone Confidence 100% Average Weight	500	500.0
Spatial Confidence 0% Lux	5120000	5000.0
Spatial Confidence 100% Lux	15360000	15000.0

Figure 3-49 Confidence Calculation

Advanced Gray World Confidence: If a high proportion of white points (statistical blocks) are concentrated in a gray area with a very high final weight. It is believed that there is high "confidence" in the advanced gray world.

If the calculated "confidence" is less than the Gray Zone Confidence 100% Average Weight, the confidence is considered to be 0%. If "confidence" exceeds the Gray Zone Confidence 100% Average Weight, the confidence is considered to be 100%. Intermediate values are linearly interpolated and smoothed.

Anchor Point Decision Confidence: If the illuminance (Lux) is less than Spatial Confidence 0% Lux, the anchor point decision confidence is considered to be 0%. If the illuminance (Lux) exceeds Spatial Confidence 100% Lux, the anchor point decision confidence is considered to be 100%.

Weight Calculation

Fusion Weights of Preditors		
1024	1.00	
0	0.00	
	eights of Predit	

Figure 3-50 Fusion Weight

- Gray Zone Weight: Gray scale weight, in cases where the confidence of the decision point in the advanced gray world is not 0, the higher this value, the closer the Fusion (post-fusion decision point) is to the decision point of the advanced gray world.
- Spatial Predictor Weight: Anchoring weight, in cases where the confidence of the anchoring decision point is not 0, the higher this value, the closer the Fusion (post-fusion decision point) is
to the anchoring decision point.

Fusion effect:

Figure 3-51 Strategy Effect

Preference Strategy (Preference) Parameter Description

! Note

XERP

It is strictly prohibited to use preference adjustments to solve issues with AWB color shifts. Remember the following rules:

To make white appear white, adjust the gray zone. (Prioritize adjusting the boundaries and weights of the gray zone to solve issues where white is not white enough)

To make white less white, adjust the preference. (Adjust preference only when white is already made white and you intentionally want it to appear less white)

LUT Kne	e Points No:		1		2		3		4		5		6		7		8		9		10	
Source Co	t (LUT Input)	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	٦	
	VeryDark	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	Ī	
	Dark	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000		
	Indoor	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	Ī	
Destination Cct	Transition Indoor	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	Ī	
(LUT Output)	Transition Outdoor	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000		
	Outdoor	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	Ĩ	
	Bright	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000	Ĩ	
	VeryBright	1800	1800	2000	2000	2200	2200	2400	2400	2600	2600	2800	2800	8000	8000	9000	9000	10000	10000	12000		
	VeryDark	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	1	
	Dark	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	Î	
	Indoor	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	Î	
Green Shift	Transition Indoor	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	1	
(LUT Output)	Transition Outdoor	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	1	
	Outdoor	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	Ì	
	Bright	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0]	
	VeryBright	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	1	

Figure 3-52 Interface

The preference strategy allows for vector movement of the Fusion (post-fusion decision point) under different illuminance and color temperature conditions. Movement is two-dimensional and can be combined to fine-tune the preferred color.

Especially note, before enabling preference settings, ensure that whites are made white. Do not use preference settings to adjust for color shifts.

Planckian Curve Direction:

Translation operations along the Planckian curve direction. This operation can be independently adjusted under different illuminance and color temperatures. For example, in an indoor scene with a mixed color temperature around 4000K, you may wish to modify the white balance tone to be warmer or cooler. First, find the adjustable values under the corresponding illuminance and color temperature. As shown in the diagram, 4000K falls between 3000K and 5000K at indoor illuminance, corresponding to the red box on the right in the diagram below.

t Discut = 100.00	Points No:	1	2	3	4	5	6	7	8	9	10	11	12	13
o Decisions] ayZone AvgBlkWt = 890.723	t (LUT Input)	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
ayZone Confid = 1.000 atial Confid = 0.000	VeryDark	1800	2000	2200	2100	2600	2800	3000	5000	7000	8000	9000	10000	12000
ayZone FusRatio = 1.000 atial FusRatio = 0.000	Dark	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
ayZone(R/G, B/G)=(0.611, 0.401)	Indoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
atial $(R/G, B/G) = (0.466, 0.607)$ sion $(R/G, B/G) = (0.611, 0.401)$	Transition Indoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
nal(R/G, B/G)=(0.610, 0.400) m H A *F D tt 27 119 732 80 YTh Y₩t YCnt 1.05 0 0 0	Transition Outdoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	Outdoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	Bright	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	VeryBright	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	VeryDark	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
00 500 160	Dark	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.00 1000 182	Indoor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
.00 800 122	Transition Indoor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	Transition Outdoor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Outdoor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	Bright	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	VeryBright	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.000

Figure 3-53 Parameter Debugging Example

Increasing the values inside the red box will move the white point towards the lower color temperature area, resulting in a cooler tone, as shown in the left diagram. Decreasing the value has the opposite effect. The effects are detailed in the diagram below: the middle is unmodified. The left diagram prefers a cooler tone, and the right diagram prefers a warmer tone.

Planckian Curve Vertical Direction:

ſ

Translation operations in the vertical direction of the Planckian curve. This operation can be independently adjusted under different illuminance and color temperatures. For example, in an indoor scene with a mixed color temperature around 4000K, you may want to modify the white balance green/magenta preference. First, find the adjustable values under the corresponding illuminance and color temperature. As shown in the diagram, 4000K falls between 3000K and 5000K at indoor illuminance, corresponding to the red box on the right in the diagram below.

Discut = 100.00	Paints No:	1	2	3	4	5	6	7	8	9	10	11	12	13
Decisions] Zone AvgBlkVt = 890.723	t (LUT input)	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
one Confid = 1.000 al Confid = 0.000	VeryDark	1800	2000	2200	2400	2600	2800	3000	5000	7000	\$000	9000	10000	12000
one FusRatio = 1.000 al FusRatio = 0.000	Dark	800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
one(R/G, B/G)=(0.611, 0.401)	Indoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
al(R/G, B/G)=(0.466, 0.607) n(R/G, B/G)=(0.611, 0.401)	Transition Indoor	1800	2009	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
R/G, B/G)=(0.610, 0.400)	Transition Outdoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
n H A *F D t 27 119 732 80 TTh YWt YCnt .80 0 0 .80 0 7	Outdoor	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	Bright	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	VeryBright	1800	2000	2200	2400	2600	2800	3000	5000	7000	8000	9000	10000	12000
	VeryDark	0.0000	0,0000	0.0000	0,0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
500 160 1000 220	Dark	0.0000	0,0000	0.0000	0.0000	0,0000	0.0000	6,0000	0.0000	0.0000	0,0000	0,0000	0,0000	0.000
1000 182 1000 333	Indoor	0.0000	0,0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0,0000	0,0000	0.000
800 122 0 0	Transition Indoor	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	Transition Outdoor	0.0000	0.0000	0.0000	0,0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.000
	Outdoor	0.0000	0.0000	8,0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,0000	0.0000	0,0000	0.000
	Bright	0.0000	0,0000	0.0000	0.0000	0,0000	0.0000	0,0000	0.0000	0.0000	0,0000	0.0000	0,0000	0.000
	VeryBright	0.0060	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

Figure 3-55 Parameter Debugging Location Example

Increasing the values inside the red box will move the white point towards the green area, resulting in a magenta bias, as shown in the left diagram. Decreasing the value has the opposite effect. The effects are detailed in the diagram below: the middle is unmodified. The left diagram is slightly magenta, and the right diagram is slightly green. Both types of shifts can be combined to achieve the desired white point shift.

Figure 3-56 Adjusting Values Inside the Red Box

with the second second

Green Zone Dynamic Segmentation Strategy (Green) Parameter Description

Figure 3-57 Green Zone Dynamic Segmentation Debugging

In scenes that include green areas, both indoors and outdoors, green statistical points often fall within the F light statistics area, leading to deviations in the final AWB statistical points. The dynamic green zone cutting strategy is implemented by setting a specific area to contain these green points and reducing their statistical weight to ensure the accuracy of the AWB points calculated. The area composed of three line segments in the lower left part of the figure below represents the green cutting zone.

Figure 3-58 Green Zone Dynamic Segmentation Region

Statistical Information

GreenCut Cnt: The number of statistical points within the GreenCut removal area.

GreenCut Weight: The attenuation weight within the GreenCut removal area.

Parameter Description

Enable: Toggle switch for enabling dynamic cutting in the green area.

Lux List Nums: The number of active lux parameters, supporting up to 8 sets. Each set can have its CutArea and attenuation weight set separately. Linear interpolation is performed between two sets.

Lux: The lux threshold for the current set.

Weight of Cut Area: The lux attenuation weight of the statistical points within the cut area, ranging from 0 to 1; when set to 1, GreenCut is ineffective, and 0 indicates full attenuation. It is recommended not to set this to 0. In some special scenarios, due to statistical point deviations, the cutting frame might encompass the entire statistical area, and setting it to 0 would result in no

effective statistical points.

Length of Break Angle: Controls the length and position of the cutting area's diagonal side; the higher the value, the longer the diagonal.

Offset Rg: Controls the position of the right boundary of the cutting area; can be a negative value, the smaller the value, the more the right boundary shifts left.

Offset Bg: Controls the position of the upper boundary of the cutting area; can be a negative value, the smaller the value, the lower the upper boundary moves.

! Note: The three edges of the green zone will move with the movement of GrayWorld statistical points.

CCT List Nums: The number of currently effective CCT parameters, with support for up to 8 sets.

CCT: CCT parameter threshold, which must be set in ascending order.

DisCount: Attenuation weight for the statistical points within the cut area, ranging from 0 to 1. When set to 1, GreenCut is ineffective; 0 means full attenuation.

- ! When either the lux attenuation weight or CCT attenuation weight is set to 1, GreenCut will not be effective.
- ! When both weights are less than 1, the final attenuation weight is calculated as the product of the lux attenuation weight and the CCT attenuation weight.

Debugging Strategy

In scenes with green areas, finely adjust the position of the green cutting area to ensure that as many green plant statistical points are included as possible while avoiding the erroneous cutting of valid statistical points. The AWB Stat frame can be used to assist in adjusting by selecting green areas, as shown in the diagram below. The purple area within the statistical frame indicates the selected green point locations, and the area composed of three slanted lines represents the green cutting zone, the weight of which can be configured through the Weight of Cut area and DisCount setting.

Figure 3-59 Green Zone Dynamic Cutting Statistical Point Example

MLC Strategy Parameter Description

XERA

Certain special colors, such as yellow objects indoors or blue skies outdoors, may fall within the statistical area in some scenes, causing deviations in AWB statistics. The MLC strategy aims to enhance the accuracy of AWB statistics by enclosing these special colors within a specified area (either rectangular or triangular) within the statistical region. Points that fall into this area are considered invalid and do not contribute to the AWB statistics.

Figure 3-60 MLC Debugging

Parameter Description

MLC Zone Group Nums: Number of MLC Zones, ranging from 0 to 15 and up to 16.

MLC Zone Group Index: Current Displayed Index Value of MLC Zone

■ For example, if MLC Zone Group Nums = 2, MLC Zone Group Index would automatically be set to 0 and 1.

When MLC Zone Group Nums = 2, two sets of parameters can be configured; Index 0 represents one set, and Index 1 represents another.

Enable: Toggle switch for the MLC Zone feature.

Zone Description: When the number of MLC Zones is large, add descriptions for each MLC Zone

for easier review.

1st Trigger Level: Condition 1 for using the MLC feature to eliminate false detection points. This includes various Trigger Values for you to choose from. Each trigger value contains four thresholds, representing [lower limit - transition area, lower limit, upper limit, upper limit + transition area]. Note: The four thresholds must be set in ascending order.

- Lux: The range of Lux values effective for triggering the MLC, with the four values representing the starting and ending Lux, and the upper and lower transition areas.
- CCT: The range of CCT values effective for triggering the MLC, with the four values representing the starting and ending Lux, and the upper and lower transition areas.
- Valid Stats Cnt Ratio: The ratio of statistical points within the gray area to the total number of points, with the four values representing the starting and ending ratio, and the upper and lower transition areas.
- Agw Rg: The range of Rg values effective for triggering the MLC, with the four values representing the starting and ending ratio, and the upper and lower transition areas.
- Agw Bg: The range of Bg values effective for triggering the MLC, with the four values representing the starting and ending ratio, and the upper and lower transition areas.
- Zone Group [i] Cnt Ratio: Specifies the detection zone ratio range for triggering MLC functionality, used in conjunction with detection zone configurations, allowing for multiple groups.

Figure 3-61 Methods for Trigger Value Taking Effects

2nd Trigger Level:

Similar to the 1st Trigger Value, used for excluding false detection points under additional conditions.

3rd Trigger Level: Flash Sensitivity;

Conditions for using the MLC feature to exclude false detection points in scenarios involving flash usage. Set to 0 to disable, 1 to enable, kept disabled in security applications.

Zone Type: Shape of the MLC Zone, supporting either Rectangle or Triangle.

Zone ROI Parameter: Endpoint coordinates of the MLC Zone area.

- If Rectangle is chosen, it represents the coordinates of two diagonal points of the rectangle.
- If Triangle is chosen, it represents the coordinates of the three points of the triangle.
- Supports manual framing; after selecting a rectangular or triangular area, you can draw the frame by dragging the mouse on the statistical area interface.

Detection Zone Group Nums: Number of detection zone groups. Value range: [0, 10].

Detection Zone Group Index: Index of the detection zone groups.

For example, if Detection Zone Group Nums = 2, Detection Zone Group Index would automatically be set to 0 and 1.

Two sets of parameters can be configured; Index 0 represents one set, and Index 1 represents another.

Detection Zone Nums: Number of detection zones. Value range: [0, 5].

Detection Zone Index: Index of the detection zones.

 Within each Detection Zone Group, 1 to 5 sets of Detection Zones can be set separately. If the Cnt Ratio of any one Detection Zone meets the condition, it can trigger the Trigger value.

Zone Description: When the number of Detection Zones is large, add descriptions for easier review.

Zone Type: Shape of the Detection Zone,

- supporting either Rectangle or Triangle.
- Supports manual framing; after selecting a rectangular or triangular area, you can draw the frame by dragging the mouse on the statistical area interface.

Zone ROI Parameter: Endpoint values of the Detection Zone area:

- If Rectangle is chosen, it represents the coordinates of two diagonal points of the rectangle.
- If Triangle is chosen, it represents the coordinates of the three points of the triangle.

Lux: Lux range in which the Detection Zone is effective.

The Detection Zone is shown as a blue rectangular frame, and the MLC Zone as a red rectangular frame in the debugging interface.

Figure 3-62 MLC Debugging

Debugging Strategy

- MLC Zone Groups can be used in conjunction with Detection Zone Groups or independently.
- A Detection Zone Group serves as a condition for an MLC Zone Group to be effective.
- Common triggers for activating MLC include Lux/CCT/Zone Group Cnt Ratio.

Common debugging strategies:

- In D50/D65/D75 color temperature environments, when there are many detection points and high illuminance, it is possible to exclude certain yellow monochrome object detection points or directly exclude areas below 3500k in gray zones to ensure common scenes like indoors or daylight do not exhibit color bias.
- Under indoor lighting, in CWF/TL84 situations where there are many detection points, you might trim areas below 2800k in color temperature to ensure large indoor yellow scenes do not exhibit color bias.
- In indoor lighting scenarios, you can calibrate detection points for specific colors like blue, yellow, and green, and make minimal trims.
- > In outdoor scenes above 10,000 lux, you can calibrate and trim blue sky detection points.

3.3.4 Statistical Information

Statistical information Overview

Figure 3-63 AWB Statistical Information

Auto Refresh Interval: A switch for the statistics information which can be turned on in auto white balance mode to automatically refresh statistics at set intervals.

Figure 3-64 Statistical Information Refresh

Adjusting Gray Zone

🗹 Edit Border		
Coordinate Axis		
MAX_RG 1.5	MAX_BG 1.5	Refresh

Edit Border: Allows online adjustment of the gray zone by dragging gray block points or selecting

multiple blocks for batch dragging and dropping, as the figure below shows. Note: During drag-anddrop adjustments, ensure that auto-refresh is turned off.

Figure 3-65 Adjusting Gray Zone

- > MAX_RG is the max. range of the horizontal axis of the image.
- > MAX_BG is the max. range of the vertical axis of the image.

AFERACE

General Information

Figure 3-66 General Information

- Color Temp: Current color temperature.
- Lux: Current illuminance.
- Lux Type: Current brightness level.
- CCT Std: Dispersion of the white point; higher values indicate a higher probability of multiple color temperatures.
- Mix Light Proba: Multi-color temperature probability; higher values indicate a higher probability of multiple color temperatures.
- Sat Discnt: Saturation discount; higher values mean less discount.

Algorithm Status

Figure 3-67 Algorithm Status

- > GrayZone AvgBlkWt: Average illuminance weight for each statistical window.
- GrayZone Confid: Confidence in the advanced gray world.
- > Spatial Confid: Anchoring confidence.
- GrayZone FusRatio: Fusion weight for the decision point in the advanced gray world.
- Spatial FusRatio: Fusion weight for the anchoring decision point.
- ➤ GrayZone (R/G, B/G): Decision point in the advanced gray world.
- Spatial (R/G, B/G): Anchoring decision point.
- Fusion (R/G, B/G): Post-fusion decision point.
- \blacktriangleright Real (R/G, B/G): AWB result decision point.

The position of the four decision points above on the Planckian Curve is shown in the figure below.

Light and Dark Block Information

Figure 3-69 Light and Dark Statistical Block Information

For more information, refer to the Luma Weight (Brightness and Darkness Preference Strategy) in AKERACON

the AWB strategy part.

Advanced Gray World Algorithm Information

Figure 3-70 Advanced Gray World Algorithm Information

This page provides algorithm information for various small gray areas under specific Lux conditions:

- > Cnt: Number of white points (statistical blocks) that fall into that small gray area.
- LxWt: Weight of that small gray area, ranging from 0 to 1000.
- LxWtSum: Weighted sum of all white points (statistical blocks) in that small gray area, calculated as LxWt (weight) × Cnt (number of white points).
- FinWtSum: Final weight used in calculations for that small gray area, calculated as LxWtSum (weighted sum) × Brightness/Darkness Preference Weight × Dominance Preference Weight × Multi-Temperature Preference Weight.
- Avg Y: Average luminance (Luma) of all white points (statistical blocks) in that small gray area, which can serve as a basis for Brightness and Darkness Preference Strategy (LumaWeight).

Gray World Block Statistics Information

In the preview interface, you can select specific blocks to view detailed detection points for

assistance in debugging. To deselect a block, double-click the right mouse button.

Figure 3-71 ROI Area Detection Points Statistics Information

ć.,

3.3.5 Auto mode

Parameter Description

- ➢ Working Mode
 - Description: Switches between auto/manual mode
 - Parameter

Manual: MWB mode. WB Gain can be adjusted.

• Auto: AWB mode.

3.4 AwbStat

3.4.1 Introduction

- AwbStat is primarily used to configure the information for the AWB statistical range. It is \geq generally recommended not to adjust this unless necessary.
- It supports configurable total areas and count points for the AWB statistical grid and \geq
- additionally allows for up to four ROIs, which can be used for near-gray pixel totals/counts and \geq sums/counts based on Luma classification.

3.4.2 Interface

3.4.3 Parameter

	AwbStat	
Parameter	Description	Range
	1: Enables AWB statistical module	
Enable	0: Disables AWB statistical module	[0, 1]
	AWB statistical position	X.O.
	0: After LSC	
AWB Stat Pos	1: After RAW2DNR	
	3: After DPC long frame	•
	4: After DPC short frame	[0, 4]
	0: Do not skip frames	
Skip Num	1: Skip 1/2 frames in 3a mode	[0, 2]
	2: Skip 2/3 frames in 3a mode	
	Grid mode	
Grid Mode	0: RGB, 1: RGGB, 2: RGGBxLuma4ch	[0, 3]
	3: RGGBxLuma2ch	
Roi offset H	The horizontal coordinate of the starting point for the Grid ROI for AWB block grid statistics.	[0, 2687]
Roi offset V	The vertical coordinate of the starting point for the Grid ROI for AWB block grid statistics.	[0, 1519]
Roi Region Num H	Number of horizontal grids for AWB statistics	[1, 72]
Roi Region Num V	Number of vertical grids for AWB statistics	[1, 54]
Roi Region W	The width of a single grid in the horizontal direction for AWB block grid statistics.	[16, 512]
Roj Region H	The height of a single grid in the vertical direction	[16 512]
	for AWB block grid statistics.	
	Threshold	I
Red Thr	The statistical threshold used for grid-based	[0, 1048575]
Green. R Thr	saturation and non-saturation value statistics in the	[0, 1048575]
Green. B Thr	R/Gr/Gb/B/Y channel for AWB.	[0, 1048575]

Blur Thr		[0, 1048575]
Y Thr		[0, 1048575]
	RGB Threshold	
Red Thr	The R/Gr/Gb/B/Y channels' threshold settings for	[-524288, 524287]
Green. R Thr		[-524288, 524287]
Green. B Thr	non-saturated pixel statistics.	[-524288, 524287]
Blur Thr	Pixels that fall within the range [Low, High] are	[-524288, 524287]
Y Thr	considered as valid pixels.	[-524288, 524287]
	Luma Threshold	XO
Luma Thr0	For the D. Cr. Ch. D. showneds, each is divided into	[-524288, 524287]
Luma Thr1	For the R, Gr, Gb, B channels, each is divided into	[-524288, 524287]
Luma Thr2	values considered as valid pixels for statistics	[-524288, 524287]
Luma Thr3	values considered as valid pixels for statistics.	[-524288, 524287]
	Ycoeff Threshold	
Red Thr		[0, 4095]
Green. R Thr	P/Gr/Gh/P Channel Calibration Coefficient	[0, 4095]
Green. B Thr		[0, 4095]
Blur Thr		[0, 4095]

3.4.4 Debugging Recommendation

Generally, it is not necessary to adjust these parameters; it is recommended to use the default configuration.

3.5 Dpc

3.5.1 Introduction

DPC (Defected Pixel Correction) is a module used for correcting bad pixels caused by sensor quality, such as static bad pixels, damaged spots, and PDAF. Currently, it can remove up to two consecutive bad pixels.

- Supports static/dynamic single bad pixel correction, static/dynamic double bad pixel correction, and static 2×2 bad pixel cluster correction.
- > Supports PDAF point extraction (PDAF Sensor).

Supports IR point extraction, completes original IR points, and restores the Bayer pattern (RGB-IR Sensor).

3.5.2 Interface

Parameter	Description	Range
DPC Enable	DPC enable switch.	01
Static Dpc Enable	Static bad pixel detection switch	01
Non Chwise Enable	When enabled, used for algorithmic selection to judge gradient information	01
Dynamic Dpc Enable	Toggle for enabling dynamic bad pixel detection	0 1

		Adjusts the cold	or limits based on WB gain and					
Color Limit	Enable	surrounding pix	kel values to prevent over-	/				
		saturation						
Working Mo	ode	Manual/Auto		/				
Ref Mode		Gain/Lux		/				
Edit Auto	laguithan Tabla	Allows editing	of the automatic parameter	1				
Edit Auto F	Algorithm Table	configuration ta	able	/				
		Circele	(Single defective pixel	1				
	Defective Divel Tree	Single	detection)	/				
	Defective Pixel Type	D 1	(Multiple defective pixels	1				
		Dual	/					
DP detect	Detect Coarse Strength	Controls the int	tensity of the detection standard	0~255				
	Dynamic Dpc Strength	Strength of dyn	amic bad pixel removal	0~4095				
		Strength of dyn	amic bad pixel removal.					
	Detect Fine Strength	The greater the	Detect Fine Strength, the more	0~63				
		bad pixels dete	bad pixels detected					
		The lower the v						
	Chwise Strength	removal, used i	n scenes with many static 2x2	0~31				
		clusters						
Dp	E 1 Otman di	Higher values i	mprove handling of edge-position	0.255				
Correction	Edge Strength	bad pixels		0~255				
	Suppress wink Threshold	Threshold for s	uppressing bad pixel flickering	0~255				
	Hat Cald Type Strength	Strength for sup	opressing bright and dark bad	0 129				
	Hot Cold Type Strength	pixels	0~128					
	Strength	Strength for dy	namic bad pixel limitation	0~128				
Dynamic		Upper limit cor	npensation for dynamic bad pixel	0 (5525				
DP Color	Opper Limit Offset	limitation		0~03333				
Limit	I avera Limit Offact	Lower limit con	mpensation for dynamic bad pixel	0 65525				
1	Lower Limit Offset	limitation		0~03333				
7	Strength	Strength for sta	tic bad pixel limitation	0~128				
Static Dp	Unner Limit Offset	Upper limit cor	npensation for static bad pixel	0 65535				
Color	Opper Linit Offset	limitation		0~05555				
Limit	Lower Limit Offset	Lower limit con	mpensation for static bad pixel	0-65535				
	Lower Emilt Offset	limitation		0, 000000				
Normal	Strength	Strength for rec	lucing bad pixels by pixel mean	0~128				
Pixel		value		0~120				
Color	Unner Limit Offset	Upper limit for	reducing bad pixels by pixel	0~65525				
Limit	Opper Linin Offset	mean value		0~03333				

	Lower Limit Offset	Lower limit for reducing bad pixels by pixel mean value	0~65535
Quick	Predet Level Slope	Slope for pre-detecting bad pixels	0~15
Detect	Predet Level Offset	Offset for pre-detecting bad pixels	0~4095
Module	Predet Level Max	Maximum value for pre-detecting bad pixels	0~4095
Noise Lut R	atio	Calibration ratio for adjusting noise, to minimize noise impact on DPC	0~10239
Noise Coef	fs	HCG Shot, LCG Shot, HCG Read, and LCG Read are obtained through calibration; manual changes not advised	DPC Calibration

Debugging suggestion:

Due to the impact of DPC on detail clarity, it is recommended not to enable it at low ISO levels (0-400). For ISO levels between 400-1600, enable DPC at the weakest setting. For ISO levels from 1600 to the maximum, activate moderate to strong intensity corrections for bad pixels as needed.

3.5.4 Debugging Method

- 1) Enable Dynamic DPC: Start by turning on Dynamic Dpc Enable and set the dynamic correction strength to the maximum (Dynamic Dpc Strength set to max).
- Observe the Nature of Defective Pixels: If single defective pixels are more frequent, set Defective Pixel Type to 0. If double defective pixels are predominant, configure Defective Pixel Type to 1.
- Adjust Pre-detection Settings: Modify Predet Level Slope, Predet Level Offset, and Predet Level Max to pre-detect bad pixels effectively.
- Check for Missed Defective Pixels: If some bad pixels are missed, increase Detect Coarse Strength and Detect Fine Strength to find the appropriate threshold.
- 5) Reduce Dynamic DPC Strength: Lower the bad pixel removal strength and compare with the original image (without DPC) until the loss in clarity becomes acceptable.
- 6) Observe Edge-positioned Bad Pixels: If the removal of edge-positioned bad pixels is inadequate,

increase Edge Strength to enhance correction effects at edges, although this may also result in a loss of resolution.

3.5.5 Auto mode

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.

stad

- ➢ Ref Mode
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.
- > Ref Val
 - Displays the current numerical value of Ref Val.

Opc Auto Table Editor

ef Value Group Nums 12 🗘																		Import
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Ref Value	1024	2048	4096	8192	16384	32382	64610	128913	257218	513216	1026432	2052684	1024	1024	1024	1024		
Noise Lut Ratio	128	128	128	128	128	128	128	128	100	86	76	66	0	0	0	0		
Defective Pixel Type	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0		
Detect Fine Strength	48	48	48	48	48	48	48	48	48	54	60	63	0	0	0	0		
Detect Coarse Strength	96	128	192	192	192	210	255	255	255	225	225	225	0	0	0	0		
Ion Chwise Enable	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
hwise Strength	30	30	30	30	30	30	20	20	20	20	20	20	0	0	0	0		
idge Strength	255	255	255	255	255	255	128	128	128	128	128	128	0	0	0	0		
lot Cold Type Strength	32	32	32	32	32	32	48	64	64	64	64	64	0	0	0	0		
uppress wink Threshold	255	255	255	255	255	255	16	16	16	16	16	16	0	0	0	0		
ynamic Dpc Strength	128	256	512	512	1024	1024	1532	2048	2048	3272	4095	4095	0	0	0	0		
vnamic Dp Color Limit Strength	128	128	128	128	128	128	128	128	128	128	128	128	0	0	0	0		
tatic Dp Color Limit Strength	128	128	128	128	128	128	128	128	128	128	128	128	0	0	0	0		
ormal Pixel Color Limit Strength	128	128	128	128	128	128	128	128	128	128	128	128	0	0	0	0		7
vnamic Dp Color Upper Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0	CN	
ynamic Dp Color Lower Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0		
tatic Dp Color Upper Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0		
tatic Dp Color Lower Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0		
ormal Pixel Color Upper Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0		
ormal Pixel Color Lower Limit Offset	1024	1024	1024	1024	1024	1024	256	256	256	256	256	256	0	0	0	0		
redet Level Slope	4	4	4	4	4	4	4	4	4	4	4	4	0	0	0	0		
redet Level Offset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
redet Level Max	256	256	256	256	256	256	256	256	256	256	256	256	0	0	0	0		
											\langle	C	2		5			

Figure 3-74 Dpc Auto Table

3.6 Blc

3.6.1 Introduction

BLC (Black Level Correction) is a module that compensates for the black level in the raw domain.

- Supports fixed black level correction.
- > Supports black level correction based on a calibrated mesh table.
- > Supports dynamic statistics and correction of the black level.
- > Supports fixed mode noise correction for the entire image.
- Supports effective area cropping.
- > Supports data mapping at a certain magnification.

3.6.2 Interface

Figure 3-75 BLC Interface

3.6.3 Parameter

Parameter	Description	Range
Enable BLC	Toggle switch for BLC, recommended to be turned on	01
Enchla SDI	Toggle for fixed black level correction FPN module,	
	recommended to be turned on	01
Working Mode	Manual/Auto	Manual/Auto
Edit Auto Algorithm Table	Allows editing of the automatic parameter	0.22
Edit Auto Algorithini Table	configuration table	0~25
Red x	Subtraction value for dark current in the R channel	0~4096
Green.R x	Subtraction value for dark current in the Gr channel	0~4096
Green.B x	Subtraction value for dark current in the GB channel	0~4096
Blue x	Subtraction value for dark current in the B channel	0~4096
	A compensation subtraction value for the dark current	
	in four channels. This allows for more precise control	
Bias x channel out	over the BLC calibration values. A unit value of 1 in	
	the compensation subtraction is equivalent to one-	[-16384,
	fourth of the dark current subtraction value.	16383]

3.6.4 Auto mode

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.

Stad

104 / 234

- ➢ Ref Mode
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.

! Notes: In HCGmode, BLC Gain is TotalGain/HCG2LCGRatio.

Ref Val

■ Displays the current numerical value of Ref Val.

ю	BLC	Auto	Table	Editor

Inport															Import	Export		
NCG LDG																		
Gain Group Nuns 12 🐱 Exposure Group Nuns 2 🕏																		
0	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15				
Gain 1024 20	4096	8192	16384	32382	64610	128913	257218	513216	1026432	2052684	1024	1024	1024	1024				
0	1	2	3	4	5 6	7	8	9										
Exposure 1000	5000	0 0	0	0	0	0	0	0										
Gain Group Index 0	· .	、 、	1		2		2			4		5		6			7	
Rod	4096	16.00000	4096	16.00000	0	0.00000	0	3	0	4	0 0	د ا	0.00000	0	0.00000	0	0.00000	
Green.R	4096	16.00000	4096	16.00000	0	0.00000	0	0.00000	0	0.000	00 0		0. 00000	° 0	0.00000	°	0.00000	0
Green.B	4096	16.00000	4096	16.00000	0	0.00000	0	0.00000	0	0.000	0 0		0.00000	0	0.00000	0	0.00000	0
Blue	4096	16.00000	4096	16.00000	0	0.00000	0	0.00000	0	0.000	0 0		0.00000	0	0.00000	0	0.00000	0
Bias Rr Channel Out	0		0		0		0		0)		0		0	0		0	
Bias Gr Channel Out	0		0		0		0		0	נ		0		0	0		0	
Bias Gb Channel Out	0		0		0		0		0)		0		0				0
Bias Bb Channel Out	0		0		0		0		0)		0		0	0		0	
<																		>

105 / 234

3.7 Hdr

3.7.1 Introduction

HDR (High Dynamic Range) involves the synthesis of one HDR image from multiple SDR (Standard Dynamic Range) images in the raw domain. It supports multiple HDR formats including HDR-2DOL and HDR-3DOL.

Main components of the HDR system:

> Fusion: This module is responsible for blending up to three SDR images to produce a single HDR image.

> Motion Detection: This module compares pairs of input SDR images to detect any motion between them. It generates a Motion Mask, which is used during the Fusion process to adjust the weights of the images based on the detected motion.

> Debug: The Debug module can output the Motion Mask to assist with parameter tuning.

3.7.2 Interface

Figure 3-77 HDR Parameter Configuration

3.7.3 Parameter

- Enable: Toggle for enabling HDR functionality (only effective in HDR-2DOL, HDR-3DOL modes; no effect in SDR mode). HDR mode is enabled by default.
- Working Mode: Switch between Manual and Auto modes. Manual mode uses a set of currently configured parameters, suitable for manual debugging in specific scenarios. In Auto mode, parameters are automatically adjusted based on the Lux/Gain of the current environment by using linear interpolation from the auto parameter table.
- > Ref Mode: Sets the reference for the automatic strategy in Auto mode, either based on Lux or Gain.

> Edit Auto Algorithm Table: Configure parameters for Auto mode.

Motion Detection and Deghosting Modules

- Motion Mask Noise Level: Parameter measuring the noise level of the current scene; pixel differences below this value are considered noise, and only differences above this value are detected as motion. The higher the value, the harder it is to detect motion; the lower the value, the easier it is to detect motion. Value range: [0, 2048] Default: 256
- Noise Lut Scale: The higher the value, the less sensitive it is to motion; the lower the value, the more sensitive. Value range: [0, 65535] Default: 4096 Both Motion Mask Noise Level and Noise Lut Scale together determine the outcome of motion detection.
- Coarse Motion Mask Sensitivity: Sensitivity for detecting coarse motion areas. A higher value increases the detection rate of coarse motion areas, while a lower value decreases it. Value range: [0, 32768] Default: 4096
- Coarse Motion Mask Ratio: The proportion of the motion area that appears in coarse granularity. Higher values result in motion areas being displayed more coarsely; lower values result in finer granularity. This parameter is recommended to be set to 0 and not enabled.
 - Coarse Motion Mask Ratio[0]: Effective when the fine granularity mask strength ≥ coarse granularity mask strength; represents the weight of coarse granularity. Value range: [0, 256]
 - Coarse Motion Mask Ratio[1]: Effective when the fine granularity mask strength < coarse granularity mask strength; represents the weight of coarse granularity. Value range: [0, 256]</p>
- Motion IIR Ratio: Controls the ratio for IIR filtering of motion areas. Higher values result in stronger filtering by the IIR filter; lower values result in weaker filtering. This parameter is recommended to be set to 0 and not enabled.
 - Motion IIR Ratio[0]: Effective when the motion mask strength of the current frame ≥ the motion mask strength of the previous frame; represents the coarse granularity weight. Value range: [0, 256]
 - Motion IIR Ratio[0]: Effective when the motion mask strength of the current frame < the motion mask strength of the previous frame; represents the coarse granularity weight. Value range: [0, 256]</p>

- > Dgst Enable: Toggle for enabling deghosting. This parameter is recommended to be enabled.
- Dgst Stren Thre: Controls the intensity of deghosting. The default value of {Dgst Stren Thre[0], Dgst Stren Thre[1]}= (0, 1024) is recommended.
- Dgst Stren Limit: Controls the upper and lower limits of deghosting strength. Dgst Stren Limit[0] controls the lower limit; value ange: [0, 255]. Dgst Stren Limit[1] controls the upper limit; value range: [0, 256]. Default value is (0, 256).

Figure 3-78 Motion Det Parameter Configuration

Exposure Mask Detection Submodule

- In this page, frame0 corresponds to the short frame input of HDR, while frame1 corresponds to the long frame input of HDR.
- Coarse Exposure Mask Ratio: The ratio of coarse-grained exposure areas. A larger value results in the final exposure area being displayed in coarse granularity, while a smaller value results in the final exposure area being displayed in fine granularity. This parameter is recommended to be set to 0 and not enabled.
 - Coarse Exposure Mask Ratio[0]: This coefficient is effective when the intensity of finegrained exposure mask is greater than or equal to the intensity of coarse-grained exposure mask. Value range: [0, 256].
 - Coarse Exposure Mask Ratio[1]: This coefficient is effective when the intensity of finegrained exposure mask is less than the intensity of coarse-grained exposure mask. Value range: [0, 256].
- Exp Mask Sensitivity: The sensitivity of coarse-grained exposure area intensity. A larger value leads to a higher detection rate of coarse-grained exposure areas, while a smaller value leads to a lower detection rate. Value range: [0, 32768]. 4096 by default.
- Exposure Area: Depends on the settings of exp weight gain & exp weight lut.
- Exp IIR Ratio: Control ratio of IIR filter for filtering overexposed areas. A larger value indicates stronger filtering by the IIR filter, while a smaller value indicates weaker filtering. This parameter is recommended to be set to 0 and not enabled.
 - Exp IIR Ratio[0]: This coefficient is effective when the exposure mask intensity of the current frame is greater than or equal to the exposure mask intensity of the previous frame. Value range: [0, 256].
 - Exp IIR Ratio[1]: This coefficient is effective when the exposure mask intensity of the current frame is less than the exposure mask intensity of the previous frame. Value range: [0, 256].
- Exp Y Ratio: Y value calculation for exp mask, with two algorithms: wb_gain value and dgain value. The Exp Y Ratio parameter represents the weight of the wb_gain algorithm when calculating Y value. A larger value indicates a greater weight of the wb_gain. Range: [0, 256]. 0 by default.
- Exp Weight Gain: Modulation parameter of exposure mask, adjusting the global exposure weight for short/long frames. A larger value indicates higher weight, while a smaller value indicates lower weight. This parameter is recommended to be set to (0, 256).
- > Dgst Base Fid: Selection of the base frame for fusion; 0 is frame0, 1 is frame1. 1 by default.
- Exp Weight Lut: Generation parameter of exposure mask, generating local exposure weights for Long/Short/VShort based on different brightness levels. A larger value indicates higher weight, while a smaller value indicates lower weight. The horizontal axis represents luminance, and the vertical axis represents weight.
 - The x-axis represents pixel brightness (luma: 0-255), and the y-axis represents weight with a value range of [0, 32768].

Control Points: Adjust the number of debug nodes for quick modification.

Figure 3-79 Exposure Mask Parameter Configuration

Fusion

- In this page, frame0 corresponds to the short frame input of HDR, while frame1 corresponds to the long frame input of HDR.
- Fus Prot Thrs: Protection threshold for fusing highlights. A smaller value indicates stricter fusion, while a larger value indicates looser fusion. Value range: [0, 262143]; Recommended value: (16000, 16192). During actual debugging, this value can be appropriately reduced to address issues with bright edge artifacts.
 - Parameter values are pixel brightness values of 14-bit images; typically, for pixel brightness values of 8-bit images, they need to be multiplied by 64 (i.e., 2⁶) before inputting.
 - Fus Prot Thrs[0]: Pixels less than or equal to Fus Prot Thrs[0] are fully fused.
 - Fus Prot Thrs[1]: Pixels greater than or equal to Fus Prot Thrs[1] are not fused at all.
 - Pixels between Fus Prot Thrs[0] and Fus Prot Thrs[1] are fused proportionally.

Motion Det	Exposure Mask	Fution	Debug			
Fus Prot Thre	e frameO star	rt 🚽		16000	frame0 end	16192
	frame1 star	rt 🚽		16000	frame1 end	16192

Debug Submodule

- Debug Mode: Debug mode, selecting different modes will display corresponding HDR debug \geq masks on the preview interface.
 - Mode0 Off
 - Mode1 Comprehensive Debug Image (includes all information from Weight Mask and NSSIA Motion Mask, most commonly used)

NOV-

- Mode2 Display Motion Mask
- Mode3 Display Exp Mask of the long frame
- Mode4 Display Exp Mask of the short frame

Figure 3-81 HDR Debug Mask1

- For DebugMaskMode1, T
- Green Highlighted Area: Represents a motion area, with high weight in frame1 (long frame) and low weight in frame0 (short frame).
- Purple Highlighted Area: Represents a motion area, with high weight in frame0 (short frame) P and low weight in frame1 (long frame).

3.7.4 Auto mode

Parameter Description

- Working Mode
 - Switching between auto/manual modes
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters based on gain/luminance Lux serve as reference value Ref Val to select appropriate parameters.

Stad

- ➢ Ref Mode
 - Selection of reference value type. This value affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Ref Mode=0 represents using Lux: In this case, Ref Val in the Auto Algorithm Table actually represents Lux. The current parameter changes with illuminance.
 - Ref Mode=1 represents using Gain: In this case, Ref Val in the Auto Algorithm Table actually represents gain. T hus, the current parameter changes with gain.
- When Ref Mode uses Gain, the Gain here is Total Gain (current Again × current Dgain × current ISPGain × LCGHCGRatio).
- Ref Val
 - Displays the current numerical value of Ref Val. Gain/Lux \times 1024.

3.8 AiNr

3.8.1 Introduction

AiNR Module: Utilizes model training results to perform noise reduction processing on images, mainly including temporal noise reduction and spatial noise reduction.

Interface 3.8.2

Figure 3-82 AiNR Parameter Configuration

AiNR							
Parameter	Description	Range					
Enable	AI denoising enable switch	01					
	Selection of reference value type. This value determines the						
Ref Mode	basis for Ref Val in the Auto Algorithm Table. \Box						
	When Ref Val is Lux, auto parameters change with	Lux/gain					

	illuminance 🗆	
	When Ref Val is gain, auto parameters change with gain.	
II de Tres	LINEAD for linear CDD mode and LIDD 2V for LIDD mode	LINEAR/HDR_2X/
nur Type	LINEAR for linear SDR mode, and HDR_2X for HDR mode	HDR_3X/HDR_4X
Debug Model Path	Local model loading path, click Upload to load locally stored model files	1
	Local loaded model, click the drop-down box to switch	*
Debug Model	between multiple models, click Delete to remove the selected	
	model	X.0.
	Default version models configured in iq.h, click the drop-	
Model[table 2]	down box to see multiple models configured in iq.h	/
	Base strength of temporal noise reduction in models. WBT	
Temporal Base Nr	models integrate various levels of temporal noise reduction,	1
	which can be freely selected from the drop-down box	
	Base strength of spatial noise reduction in models. WBT	
Spatial Base Nr	models integrate various levels of spatial noise reduction,	/
	which can be freely selected from the drop-down box	
Edit Auto	Automatic parameter configuration table	/
Algorithm Table		,
Bias Rr Channel	Modulation of BLC at the model end to improve BLC	-4096~4095
In/Out	accuracy issues, affecting noise and color	
2D/3D Bias	Affects the noise of input data to the ainr model, generally	
Rr/Gr/Gb/Bb	agreed to be the same as sensor's BL, not recommended for	0~65535
Channel In	debugging.	
Temporal NR	Temporal noise reduction strength table in the model, from	0~4096
Strength	left to right, representing static to dynamic areas	
Vst Temporal NR	VST model spatial noise reduction strength table, from left to	
Strength	right, representing static to dynamic areas, recommended to	0~4096
	use default values or fine-tune	
Spatial NR	Spatial noise reduction strength table in the model, from left	
Strength	to right, representing static to dynamic areas, larger values	0~4096
8	indicate stronger noise reduction	

As shown in the above graph, the horizontal axis from left to right represents the static area to the motion area. The vertical axis represents temporal strength, where a larger value indicates weaker temporal strength. It is recommended to use the default curve. In most cases, it can accurately distinguish between motion and static areas. Under high gain, you can appropriately increase the values of the last few points to improve the degree of trailing.

Figure 3-84 AiNr_Vst_Temporal_NR_Strength Parameter Configuration

 As shown in the above graph, the horizontal axis from left to right represents the static area to the motion area. The vertical axis represents spatial noise reduction strength, where a larger value indicates stronger spatial strength. It is recommended to maintain the default curve strength or fine-tune the default values.

Figure 3-85 AiNr_Spatial_NR_Strength Parameter Configuration

 As shown in the above graph, the horizontal axis from left to right represents the static area to the motion area. The vertical axis represents spatial noise reduction strength, where a larger value indicates stronger spatial strength. It is recommended to have a smooth transition between the static and motion areas.

3.8.4 Model Naming

Description of General Model Naming

					Gen	eral Model						
Sensor	Model Type	Width (W)	Height (H)	Bit_Depth	CgMode	ISP1	Again (X)	IspGain	4-bit	11-bit	Date	Platform
Name				(bit)					Number	Number	1	
Full name	Indicates the	ю	ю	IO bit of	When a	Currently	The analog	The ISP	For interr	For internal		Platform
of the	primary type	resolution	resolution	the model,	sensor	using 1	gain segment	gain	debuggin	g 🔾	release	of the
sensor,	of the	width of	height of	e.g. 10 bit,	has both	NPU	of the model,	segment for			date of	model,
e.g.	model.	the model	the model	12 bit, or	HCG and	core	either as a	the model,	C		the	e.g.
OS04A10,	Common			16 bit	LCG		range or a	either as a			model,	AX620A
IMX334,	base types				modes,		specific	range or a	\mathbf{N}		such as	or
and	include:				this		value.	specific			220114	AX620E
OS08A20	SDR and				distingui		Ranges are	value.				
	HDR. Most				shes		indicated	Ranges are				
	SDRs use				between		with a dash,	indicated	~~`			
	the WBT				them. If		such as	with a dash.	D'			
	model, and				HCG is		A16X and	If there is				
	currently				not		A16-32X.	no ISP gain				
	only HDR				available,			segmentatio				
	models				it		\sim \sim	n, it can be				
	utilize this				defaults			omitted.				
	form.				to LCG.							

Example:

SC450AI_HDR_2688x1520_10b_LCG_ISP1_A8-32X_0000_00000648546_240119_AX620E.axmodel

This model represents:

- Sensor name: SC450AI
- Model type: HDR mode
- Model input/output image width: 2688 pixels
- Model input/output image height: 1520 pixels
- Model data bit depth: 10 bits
- Sensor working mode adapted by the model: LCG mode
- ISP1: Currently using 1 NPU core
- A8-32: Indicates the model is suitable for gain ranges of 8X-32X (Again)

- IspGain: This value is omitted, indicating that the model is suitable for the gain segment where IspGain is not activated, i.e., IspGain=0X
- 0000_00000648546: This is a marker value for internal debugging purposes.
- 240119: Indicates the model's release date is January 19, 2024.
- AX620E: Indicates that the corresponding chip platform for this model is AX620E.

Description of WBT Model Naming

	WBT Model												
Sensor	Model Type	Width (W)	Height (H)	Bit_Depth	CgMode	ISP1	Again (X)	IspGain	4-bit	11-bit	MULTI	Date	Platform
Name				(bit)					Number	Number	Х		
Full name	Indicates the	Ю	IO	IO bit of	When a	Currently	The analog	The ISP	For intern	al	X is the	The	Platform
of the	primary type	resolution	resolution	the model,	sensor	using 1	gain segment	gain	debuggin	g	max.	releas	of the
sensor,	of the	width of	height of	e.g. 10 bit,	has both	NPU	of the model,	segment for)	number	e	model,
e.g.	model.	the model	the model	12 bit, or	HCG and	core	either as a	the model,			of	date	e.g.
OS04A10,	Common			16 bit	LCG		range or a	either as a			2D/3D	of the	AX620A
IMX334,	base types				modes,		specific	range or a	7		sub-	mode	or
and	include:				this		value.	specific			models	1,	AX620E
OS08A20	SDR and				distingui		Ranges are	value.			in the	such	
	HDR. Most				shes		indicated	Ranges are			WBT	as	
	SDRs use				between		with a dash,	indicated			model	2201	
	the WBT				them. If		such as	with a dash.				14	
	model, and				HCG is		A16X and	If there is					
	currently				not		A16-32X.	no ISP gain					
	only HDR				available,			segmentatio					
	models				it		r	n, it can be					
	utilize this				defaults			omitted.					
	form.				to LCG.								

c'ai

- WBT model naming follows the regular model naming rules, but includes the additional name "MULTIX" due to containing multiple sub-models. Here, X represents the maximum number of 2D/3D sub-models in the WBT model. For example, if there are 3 3D sub-models and 4 2D submodels in the WBT, then X would be 4.
- Naming rules for WBT's sub-models

Mass production package version + Model type (2d/3d) + Model structure + Selected parameters

Example: V0.2.8_2d_S1-R600C_iso76800_102400_L147_F4_C1_M1

- V0.2.8: Indicates the mass production package version is V0.2.8
- 2d: Indicates that the model is a 2D model
- S1-R600C: Represents the structure model number of the model

- Iso76800 102400: Represents the current model's adapted gain range
- L147 F4 C1 M1: Represents the parameters used when selecting the model from the mass production platform. Here, L stands for luma, F stands for fine, C stands for coarse, and M stands for motion.

3.8.5 **Model Integration Description**

3.8.5.1 WBT Model Integration Configuration

3.8.5.2 Non-WBT Model Integration Configuration

Figure 3-87 Non-WBT Model Integration Configuration

3.8.6 Auto parameter

XERP

Configure automatic mode parameters to switch between different model parameters based on varying gains in different environmental conditions.

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

as De-noisin	ng range of m	odel group 1	De-n	oising range of 1	nodel grou	p 4	
ef Value Group Nums 4	£ 🌩						
	0	1	2	3			
Ref Value Start	6400	8000	9600	11200			
Ref Value End	8000	9600	11200	12800		N 1	
Bias Rr Channel In	0	0	0	0			
Bias Gr Channel In	0	0	0	0			
Bias Gb Channel In	0 Range	e [-4096, 4095]	0	0		0	
Bias Bb Channel In	0	0	0	0	5		
Bias Rr Channel Out	0	0	0	0			
Bias Gr Channel Out	0	0	0	0	\mathcal{V}		
Bias Gb Channel Out	0	0	0	0			
Bias Bb Channel Out	0	0	0	0			
n-sensitive					0.		
on-sensitive ef Value Group Nums 4				K01			
on-sensitive ef Value Group Nums 4	0	1	2	3			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End	0 262144 612352	1 612352 962560	2 962560 1312768	3 1312768 20185960			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Lemnoral Strength	4 ♥ 0 262144 612352 Edit Lut	1 612352 962560	2 962560 1312768 Edit Ju	3 1312768 2088960			
on-sensitive 2f Value Group Nums 4 Ref Value Start Ref Value End Femporal Strength /st Temporal Strength	0 262144 612352 Edit Lut	1 612352 962560 : Edit Lut	2 962560 1312768 Edit Lu	3 1312768 2088960 Edit Lut Edit Lut			
on-sensitive af Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength	4 🔹 0 262144 612352 Edit Lut	1 612352 962560 : Edit Lut	2 962560 1312768 Edit Lu	3 1312768 2088960 Edit Lut Edit Lut			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength	0 262144 612352 Edit Lut	1 612352 962560 : Edit Lut Edit Lut	2 962560 1312768 Edit Lu Edit Lu	3 1312768 2088960 t Edit Lut Edit Lut			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength unsitive ef Value Group Nums 4	4 🔹 0 262144 612352 Edit Lut Edit Lut	1 612352 962560 : Edit Lut Edit Lut	2 962560 1312768 Edit Lu Edit Lu	3 1312768 2088960 Edit Lut Edit Lut			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength unsitive ef Value Group Nums 4	4 € 0 262144 612352 Edit Lut Edit Lut	1 612352 962560 : Edit Lut Edit Lut	2 962560 1312768 Edit Lu Edit Lu	3 1312768 2088960 Edit Lut Edit Lut			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength ensitive ef Value Group Nums 4 Ref Value Start 2621	4 0 262144 612352 Edit Lut Edit Lut 4 0 144	1 612352 962560 Edit Lut Edit Lut Edit Lut	2 962560 1312768 Edit Lu Edit Lu 2 262560	3 1312768 2088960 Edit Lut Edit Lut Edit Lut 3 1312768			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Temporal Strength Vst Temporal Strength ensitive ef Value Group Nums 4 Ref Value Start 2621 Ref Value End 6123	4 € 0 262144 612352 Edit Lut 4 € 0 144 352	1 612352 962560 Edit Lut Edit Lut 612352 962560	2 962560 1312768 Edit Lu Edit Lu 2 2 962560 1312768	3 1312768 2088960 Edit Lut Edit Lut 3 1312768 2088960			
on-sensitive ef Value Group Nums 4 Ref Value Start Ref Value End Femporal Strength /st Temporal Strength if Value Group Nums 4 Ref Value Start 2621 Ref Value End 6123 Spatial Strength	4 0 262144 612352 Edit Lut 4 0 144 552 Edit Lut	1 612352 962560 Edit Lut 612352 962560 Edit Lut	2 962560 1312768 Edit Lu Edit Lu 2 962560 1312768 Edit Lut	3 1312768 2088960 Edit Lut Edit Lut 3 1312768 2068960 Edit Lut			

Figure 3-88 Automatic parameter configuration table

- Ref Value Start/End: Set the starting and ending gain points at which the model becomes effective. Taking the configuration in the above figure as an example, 6400 represents TotalGain=6400/100=64X, which corresponds to 36dB when converted to dB units.
- The meaning of Ref Value Start/End in Temporal/Spatial Strength is similar. Using the configuration in the above image as an example, if the Sensor's HCG/LCG = 4, then at TotalGain = 64X, Ref Value Start = 64×4×1024=262144.

3.9 Scene

3.9.1 Introduction

The Scene module is designed to provide users with the capability to configure the working mode of the ISP. It serves as a functional module that allows the TIISP to automatically switch to AIISP mode at a certain gain level.

3.9.2 Interface

Figure 3-89 Scene

Parameter 3.9.3

Parameter	Description	Range
Working Mode	Auto/Manual working mode	Auto/Manua
	Edit and modify automatic parameter	
Edit Auto Algorithm Table	configuration	/

		0~
Ref Value Start	Starting gain (TotalGain×1024)	4294967295
		0 ~
Ref Value End	Ending gain (TotalGain×1024)	4294967295
AI Work Mode	Manually configure AI enable	0~255

3.9.4 Debugging Steps

Assuming AIISP is enabled at 30dB, configuration can be done as per the diagram below. The parameter calculation process is as follows: $30dB = TotalGain (32X) = 32 \times 1024 = 32768$. In the table below, AI is disabled when in the range [1024, 32768], indicating TIISP mode, and AI is enabled in the range [32768, 4193280], indicating AI mode. Delta represents the smoothing parameter, and the default value can be used.

3.10 Raw2DNr

3.10.1 Introduction

Raw2DNr: Raw domain 2D noise reduction module. It supports spatial noise reduction, edge

preservation frequency separation, separate control of high-frequency noise and low-frequency noise, Gb and Gr channel noise reduction, noise reduction intensity control based on brightness, and support for receiving external motion mask input for separate noise reduction control in motion and static regions. Below is the algorithm process.

Figure 3-92 Raw2Dnr

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

Figure 3-93 Raw2Dnr

3.10.3 Parameter

Parameter	Description	Range
Enable Raw2Dnr	Function switch, check to enable	0.1
Working Mode	Auto/Manual working mode	Auto/Manua
05	Linear/log mode, recommended to use Linear	
Lut Type	mode	
	SDR mode	/
Lut Mode	HDR mode	2DOL/3DOL
Edit Auto Algorithm Table	Edit and modify auto algorithm table configuration	/
Mask Thre	Mask threshold	0~255
Mask Limit Lower	Mask lower limit, recommended to set to 0	0~255
Mask Limit Upper	Mask upper limit, recommended to set to 255	0~255
	Edge preservation ratio, the smaller the value, the	
	more low-frequency proportion, the larger the	
Edge Preserve Ratio	value, the more high-frequency proportion	0~255

Parameter	Description	Range
	Noise coefficient, the larger the value, the weaker	
NoiseProfileFactor	the noise reduction	0~255
High Freq NR Enable	High-frequency noise reduction function switch	0.1
High Freq NR Strength	High-frequency noise reduction strength, the larger	
Background/Foreground	the value, the stronger the overall noise reduction	0~255
	High-frequency noise reduction strength adjusted	
High Freq NR Factor	with brightness for background/foreground, the	C.
Background/Foreground	larger the value, the stronger the noise reduction $\sqrt{2}$	0~4095
Low Freq NR Enable	Low-frequency noise reduction function switch	0~1
	Low-frequency noise reduction strength adjusted	
Low Freq NR Strength	with brightness, the larger the value, the stronger	
Background/Foreground	the noise reduction	0~255
Low Freq NR Factor	Low-frequency noise reduction strength adjusted	
Background/Foreground	with brightness for background/foreground	0~255
Low Freq G Channel NR	Gr, Gb channel noise reduction strength, the larger	
Strength	the value, the stronger the noise reduction	0~255

In versions after 240822, the effective node count for the NR Factor Lut parameter has been optimized. For the linear type, the effective parameters have been reduced from 17 to 5 (counting from the left of the LUT table). For the log type, the effective parameters have been reduced from 17 to 15 (counting from the left of the LUT table).

Debugging Steps

Step 1: Adjust parameters to separate image frequency bands.

- > Set High Freq NR Strength to (255, 255).
- > Set Low Freq NR Strength to (0, 0).
- Adjust Edge Preserve Ratio until high-frequency noise is removed while preserving the edges adequately.
- > If edge preservation is not ideal, decrease NoiseProfileFactor.

Step 2: Adjust non-masked areas.

- 1) Adjusting High-Frequency Part:
- > Set High Freq NR Strength Background to 255.

- Adjust the LUT curve below High Freq NR Strength Background to adjust the noise reduction coefficients at different brightness levels.
- > Lower the intensity of High Freq NR Strength Background to balance the overall effect.
- 2) Adjusting Low-Frequency Part:
- Set Low Freq NR Strength Background to 255.
- Adjust the LUT curve below Low Freq NR Strength Background to adjust the noise reduction coefficients at different brightness levels.
- > Lower the intensity of Low Freq NR Strength to balance the overall effect.
- Adjust Low Freq G Channel NR Strength to balance the intensity between channels; it's recommended to set it to 128 if there are no obvious artifacts.

Step 3: Adjust masked areas.

- This part applies when there is an external Mask input, such as when the NPU inputs a motion Mask. In SDR mode with AI, only the High/Low Freq NR Factor Foreground parts are effective. Without an external Mask input, only the High/Low Freq NR Factor Background parameters are effective.
- In SDR mode with AI, High/Low Freq NR Strength Foreground/Background correspond to motion and static regions respectively. It's recommended to set Mask Thre between 16-32, usually set to 16, depending on the range of Mask data provided by the external NPU.
- In HDR mode, High/Low Freq NR Strength Foreground/Background correspond to short and long frames respectively, not motion and static regions. Same recommendations for Mask Thre apply as in SDR mode.

1) Adjusting High-Frequency Part:

- Set High Freq NR Strength Foreground to 255.
- Adjust the LUT curve in High Freq NR Factor Foreground to adjust the noise reduction intensity at different brightness levels.
- ▶ Lower the intensity of High Freq NR Strength to balance the overall effect.

- 2) Adjusting Low-Frequency Part:
 - Set Low Freq NR Strength Foreground to 255.
 - Adjust the LUT curve in Low Freq NR Factor Foreground to adjust the noise reduction intensity at different brightness levels.

30

127 / 234

Lower the intensity of Low Freq NR Strength to balance the overall effect.

3.11 Lsc

3.11.1 Introduction

LSC (Lens Shading Correction) is a module aimed at correcting uneven distribution of luminance and color shading in images. Its functions include:

- > Correcting luma shading to address uneven brightness at the edges and center of the image.
- > Correcting color shading to address color deviations at the edges and center of the image.
- For LSC correction methods, please refer to AX Image Calibration and Debugging Guide.

3.11.2 Interface

tu 🖂 🗥		p																			
		b																			
c ~		5		i= 127	 (5) M 	0		tant Previe	aw.												
-				•{}/																	
	^ T-	o Set1 To	Set2 L	oad Set1	Load Set2																
		Enable Leng	Shading Co	rection																	
er	No.	-h Node	bilauring ov	AL BOULON		W													4		
	ne	sti woue				813	ror											-	1		
	¥o	rk Mode				Mar	wal														
	Re	f Mode				Gai	in														
	Al	g Mode				Efi	fect												1		
at												E	dit Auto .	Algorithm	Table						
		nanual Sta	tus																		
	1	una Ratio				_								100							
		Color Ratio												100							
		Luna																			
Nr															-						
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
		0 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
aic		1 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
ole		3 16394	16294	16204	16204	16204	16204	16204	16204	16204	16294	16294	16204	46904	16204	16204	16204	16204	16204	16204	
		2 10364	10304	10304	10504	10504	10304	10504	10504	10504	10504	10304	10304	10504	10304	10504	10304	10504	10504	10504	
		3 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
a		4 16304	16004	16004	16004	16004	16004	16004	16004	16004	16004	16004	16304	ACODA	46304	16204	16004	16004	16004	16204	,
,															•						
		Colon - Red	0.1	0	C -1	C)							
		Color - Ked	Color	- Green. Ked	Color	- Green. BI	ue Colo	r - Blue							XN						
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
٨r		0 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
٩r		1 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	-1
n		1 10304	10304	10304	10304	10304	10304	10304	10304	10304	10304	10304	10504	10304	10304	10304	10304	10304	10304	10304	
		2 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
		3 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
		4 16304	16004	16004	16004	16004	16004	16004	16004	15204	16204	16004	16304	16304	16004	16004	16004	16004	16004	16004	1
		`									No.									,	

Figure 3-94 LSC Interface

3.11.3 Parameter

LSC parameters are derived from offline calibration.

Paramete	er	Description	Range				
Mash Mada	Normal	Normal correction grid 15H×19W	/				
Mesh Mode	Mirror	Mirrored correction grid 15H×19W	/				
Work Mode	Manual/Auto	Manual/Automatic mode	/				
Ref Mode	Gain/Lux	Gain/Lux as reference values	/				
		Accurate mode, LSC table calculated for					
	Effect	Effect every frame					
Alg Mode		Balanced mode, LSC table calculated every					
Alg Mode	Balance	two frames	/				
		Efficient mode, LSC table calculated every					
	Performance	three frames	/				
Edit Auto Algorithm	Allows aditing	of the outomatic percenter configuration table					
Table	Anows eating	/					

	Luma correction intensity, higher values result in stronger					
Luma Ratio	LSC luma effect	0~100				
	Color correction intensity, higher values result in stronger					
Color Ratio	LSC color effect	0~100				
Luma	Luminance correction intensity					
Color-Red	R channel correction intensity	Calibrated				
Color-Green.Red	GR channel correction intensity	Calibrated				
Color-Green.Blue	GB channel correction intensity	data				
Color-Blue	B channel correction intensity					
3.11.4 Auto m	ode					
Parameter Description						
 Working Mode 	Working Mode					
Description: S	Description: Switches between auto/manual mode					

3.11.4 Auto mode

Parameter Description

- \geq Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted. •
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- Ref Mode \geq
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.
- Ref Val: \geq

Displays the current numerical value of Ref Val.

s 🚻 🕞 🗱	a t •	8																			
		0																			
ipe (~		-2	•	I	3	0 0	🖌 🗹 Inst	ant Previe	w												
sor /	^ T	o Set1 To	Set2 L																		
ge																				_	
ister]Enable Lens :	Shading Co	rrection																	
ne	Ne	esh Mode				Mir	ror														
	¥c	ork Mode				Han	ual														
tat	Re	af Mode				Gai	n														
	A1	g Node				Eff	ect														
Stat													- 37	1 1 +1	m-1-1 -						
													sait Auto A	Algorithm	labie			_			
at		Manual Sta	tus														_				
		Luma Ratio				_								100							
		Color Batio												100							
		Tune																-			_
DN-		Luita																			
ZDINI		0	1	2	3	4	5	6	7	8	9	10	11	12	13	_14	15	16	17	18	1
		0 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
osaic		1 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
rple		16304	10001	10001	10001	16304	16304	16304	16304	16304	10001	16304	10001	10001	16204	10004	10001	16304	16304	16004	
		2 10304	10364	10304	10364	10364	10304	10304	10304	10304	10364	10364	10384	10364	10504	10564	10364	10564	10364	10304	
ıt		3 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	_
ma		4 16304	16004	16004	16004	16004	14004	16004	16004	16004	16004	16004	16304	10304	16004	16304	16004	16004	16004	16004	>
ze															-						
		Color = Red	Color	- Green Red	Color	- Groop Pl	Color	r - Blue								\sim	Ť				
		COIOL Red	00101	or een. neu	00101	OT GELT DI	ue ovro	DIGO							. * . (_
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
DNr		0 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
DNr		1 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
pen		3 16294	16294	16394	16284	16284	16384	16384	16394	16284	16284	16284	16294	16294	16284	16284	16394	16284	16284	16284	
p		2 10304	10304	10304	10304	10304	10304	10304	10304	10304	10304	10504	10304	10504	10304	10304	10304	10304	10304	10304	
		3 16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	16384	
00		4 16004	16004	16004	16004	16004	16004	16004	16004	16004	16004	16704	10104	16204	16004	16004	16004	16004	16004	16004	

Figure 3-95 Lsc Auto Table

3.12 Rltm

3.12.1 Introduction

RLTM (Raw Local Tone Mapping) is a module that performs LTM in the raw domain. As a brightness adjustment module, RLTM enables both local and global tone mapping functions. It enhances the visibility of images by adjusting local brightness and contrast, while also addressing display issues in HDR scenes.

- On the MC620E platform, RLTM supports a maximum data width compression of 20 bits to 12 bits.
- It divides the image into windows for brightness adjustment, with window sizes of 128/256/512/1024/1024 supported. The maximum total number of windows is 16x12. RLTM utilizes a curve with 257 segments in a log_lut format.

- Support for histogram statistics, mean statistics, and log mean statistics for the brightness of \geq each window.
- 257-segment log lut for global brightness adjustment. \geq
- Highlights suppression, backlight enhancement, and contrast enhancement. \geq
- Local high-frequency detail retention/enhancement. \geq
- Global low-frequency enhancement. \geq

Figure 3-96 RLTM Processing Flowchart

Pre-processing Module

Pre-processing modules:

- The pre-processing modules of RLTM includes tuning of preceding modules such as AE, AWB, \geq HDR, AINr, RAW2DNr, LSC, etc.
- Demosaic, Color Correction, and Gamma modules need to be at least initially tuned or use \triangleright default configuration.

Automatic Adjustment Dependencies

The automatic adjustment of RLTM depends on dynamic parameters from other modules:

- Illuminance information: from AE \triangleright
- Exposure time: from AE \geq
- Analog gain: from AE \geq

- Digital gain: from AE
- \succ HCG status: from AE

3.12.2 Interface

Figure 3-97 RLTM Interface

3.12.3 Parameter

	Coef	
Parameter	Description	Range
Multi Com Symo	Multi-camera synchronization mode. INDEPEND/	
Mada	MASTER SLAVE/ OVERLAP. Choose INDEPEND	/
WIDde	for single-camera mode.	
Working Mode	Select manual/auto mode.	/
DafMada	Sets the automation strategy in Auto mode, either based	
Kel Widde	on Lux or Gain.	/
Alg Mode	Effect Priority/Balance/Performance; Default: Effect	
Alg Mode	Priority	

Edit Auto		
Algorithm Table	Edit the parameter table for Auto mode.	/
	Manual-Coef	/
Luma Weight	 Weight for calculating Luma inside the RLTM module using (R, Gr, Gb, B, max(R, Gr, Gb, B)). Ensure that luma_weight.sum() = 1 (Tuningtool interface value: 128). Where luma = Weight_R × R + Weight_Gr × Gr + Weight_Gb × Gb + Weight_B × B + Weight_max(R, Gr, Gb, B) × max(R, Gr, Gb, B). Luma Priority: Y = R × 0.299 + G × 0.587 + B × 0.114 standard calculation logic, prioritizing brightness. Balance: Y = 1/3 × R + 1/3 × G + 1/3 × B balanced between Luma Priority and Color Priority. Color Priority: Y = max(R, Gr, Gb, B) prioritizing color to avoid overexposure. User Defined: Custom ratios based on 	Recommended to use Luma Priority.
Win Size	requirements. Reference range for brightness statistics windows. Smaller windows result in higher local contrast, while larger windows smooth out brightness transitions. Recommended: 512 for 2M/4M resolution sensors, 1024 for 4K resolution sensors. Factor for adjusting local-global proportions. Larger	{128, 256, 512, 1024}
Local Factor	values result in higher local contrast, while smaller	0 100
Rltm Strength	Strength value for RLTM. Configured as 0, AI-RLTM is disabled, using only the original image before AI-RLTM processing. Configured as 128, AI-RLTM is at its maximum strength, using only the image after AI-RLTM processing.	0~128
Base Gain	When mixing with the original image, pre-multiply the original image by base gain before fusion.When rltm strength is 128, indicating no fusion with the original image, this parameter has no effect.When rltm strength is less than 128, the higher the base	1~65535

	gain, the higher the final image brightness.	
	A value of 64 represents 1x gain.	
	Coefficient for different brightness interval ratios.	
Contrast Strength	Higher values result in higher local contrast, but	
Contrast Strongth	excessive contrast may cause unnatural brightness	
	transitions like halos.	0~255
	Minimum brightness for histogram weight statistics.	X
	Pixels with brightness lower than the offset have	a.C.
	reduced weight. Higher offset values decrease pixel	
	weight in more areas, reducing the likelihood of	
offset	overexposure but lowering overall image brightness.	
	Recommended values:	
	> SDR 10-bit: 96	
	▶ HDR 10-bit: 77	
	Adjust around theoretical values based on actual results.	0~211
	Limiting factor for brightness and contrast	
	enhancement. Larger values restrict the enhancement	
	less, resulting in higher local contrast and brightness.	
	Smaller values limit brightness adjustments, leading to	
K Max	poorer visibility in dark areas.	
	Larger k max for less limited brightness adjustment	
	and higher local contrast and brightness: smaller k max	
	for brightness multiplier and less ideal visibility in dark	
	areas.	1~65535
	High highlight suppression. Higher values darken the	
Highlight Sup	image, affecting low-light areas as well	0~255
	Overall brightness adjustment particularly affecting	0 200
	dark areas	
PreGamma	Larger values darken dark areas: smaller values	
	brighten them	32~255
	Overall brightness adjustment particularly affecting	52 200
	bright areas	
PostGamma	Larger values darken bright areas: smaller values	
	brighten them	32~255
	Digital gain (does not affect AL PLTM functionality)	
Extra Dagin	Increases overall image brightness. I argen values result	
	in more significant brightness, cabanagement but	16 255
	in more significant origniness enhancement, but	10~233

	excessiv	ve enhancement is not recommended. Increasing			
	gain by	Extra DGain/16 times.			
	Default	value: Extra Dgain = 16 for 1x, maintaining the			
	original	brightness.			
		Generally used to counteract quantization step			
	No	texture. Not typically activated under normal			
Dither Mode	Dither	conditions.	0/1		
	Enable				
	Dither	Enable dither noise.	0/1		
	Intensity of high-frequency pulsating random noise.				
Dither Scaler	Larger v				
	added.	0~65535			
CTM CW Englis	Enable GTM SW enable switch. When enabled, AI-				
GTWI SW Enable	RLTM f	0/1			
	Digital g	gain (affects AI-RLTM functionality).			
GTM SW Dgain	Higher v				
	contrast	256~65535			
	Blend ra				
Alpha	curve us				
	converg	0~65535			
Stop Updating	Stop cal	culating updates. Typically left unchecked.	0/1		
Reset	Reset R	LTM calculates updates per frame.	0/1		

Win Size

Spatial reference range. Options include 128, 256, 512, 1024, 2048. For performance reasons, it is recommended to use 512 for 4M resolution and 1024 or higher for 8M resolution.

> Effect: The smaller the window, the higher the local contrast (as shown in the left image below), and the larger the window, the more natural the image transition (as shown in the right image below).

Figure 3-98 Win Size Effect

Local Factor

➤ Local contrast enhancement strength. AI-RLTM has two contrast enhancements: local and global. Local Factor adjusts the ratio between local and global contrast. Larger values increase local contrast, while smaller values increase global contrast.

> Effect: For example, when Local Factor = 0 (bottom left image), the weight of global contrast is high, resulting in lower visibility of details in dark areas like the black cloth. However, when Local Factor = 128 (bottom right image), the weight of local contrast is high, increasing the visibility of details in the black cloth, and the black blocks on the color checkerboard are darker and more distinct.

Figure 3-99 Local Factor Effect

K Max

Maximum brightness multiplier. Range: [1, 65535].

➢ Effect: When AI-RLTM enhances local contrast and brightness, it multiplies the original image by a certain factor. K Max limits the maximum brightness gain.

> A larger K Max allows more freedom in brightness adjustment (as shown in the right image below), while a smaller K Max limits brightness enhancement, leading to poorer visibility in dark areas (as shown in the left image below). In the example below, as K Max increases, the limitation on brightness enhancement gradually decreases, resulting in improved visibility in dark areas near the plant.

Figure 3-100 K Max Effect

Highlight Sup

➢ Highlight suppression. Higher values darken the image, affecting both high and low-light areas. Range: [0, 255].

Figure 3-101 Highlight Sup Effect

Pre Gamma

➢ Overall brightness adjustment, particularly affecting dark areas. Range: [0, 255], 32 by default.

> Larger values darken dark areas; smaller values brighten them.

Figure 3-102 Pre Gamma Effect

Post Gamma

- > Overall brightness adjustment, particularly affecting bright areas. Range: [32, 255].
- > Effect: Larger values darken bright areas; smaller values brighten them.

Figure 3-103 Post Gamma Effect

Extra DGain

> Digital gain. Range: [16, 255], 16 by default, recommend not adjusting unless necessary.

➤ Effect: Increases overall image brightness. Larger values result in more significant brightness enhancement (as shown in the right image below), with the enhancement factor being Extra DGain/16 times.

Figure 3-104 Extra Dgain Effect

Dither Mode

Choose whether to enable dither noise and select where to add dither. Recommended not to enable.

Dither Scaler

➤ Add random noise to the entire image. Larger Dither Scaler for more pronounced noise. Usually used to counteract quantization artifacts, it is recommended not to enable it under normal circumstances. Range: [0, 65535].

> Effect: Increases random noise in the image, as shown in the magnified area within the red box in the example image below.

Figure 3-105 Dither Scaler Effect

GTM SW Enable

> GTM SW enable switch. Enabling this module is equivalent to disabling RLTM functionality.

GTM SW DGain

> When GTM SW Enable is checked, GTM function is enabled, equivalent to disabling RLTM functionality. RLTM module serves as a digital gain module. Range: [256, 65535].

Effect: Higher values result in higher brightness.

Figure 3-106 GTM_SW_DGain Effect

Alpha

Blend ratio of the current computed curve with the curve used in the previous frame. Affects the convergence rate of RLTM. Default: 512. Recommended not to modify this value.

Reset

RLTM calculates updates per frame. Default: Off. Can be turned on for manual debugging.

Stop Updating

Stop RLTM from calculating updates. Default: Off.

S-Curve

Adjust contrast for specific brightness levels by using grayscale mapping. Can be used to enhance brightness in dark areas, but exaggerated S-curve may lead to issues like increased noise in dark areas and reduced contrast in other brightness intervals.

- shadow_point: Threshold point for the shadow region.
- shadow_strength: Strength of enhancement or suppression in the shadow region.

- highlight point: Threshold point for the highlight region. \triangleright
- highlight strength: Enhancement or suppression in the highlight region. \triangleright
- P Start with linear interpolation before adjusting the S-Curve after tuning the RLTM basic module. The S-Curve can be used to enhance brightness in shadow regions, but be cautious of exaggerating the curve, which can lead to increased noise in dark areas and decreased contrast in other brightness regions.

Figure 3-107 S-Curve

	S-Curve	
Paramete r	Description	Range
Shadow		
Point	Threshold point for the shadow region. 0.25 by default.	0~1
Shadow	Enhancement or suppression in the shadow region. 1 by	
Strength	default.	0~4
Highlight		
Point	Threshold point for the highlight region. 0.75 by default.	0~1

Highlight	Enhance	ement or suppression in the highlight region. 1 by	
Strength	default.		0~4
	Regio		
	n I	Number of controlling points in Region I	1~50
Control	Regio		
Points	n II	Number of controlling points in Region II	1~50
	Regio		×1
	n III	Number of controlling points in Region II	1~50
Cubio	Enables	the S-Curve to be displayed using cubic spline	×O
Cubic	interpola	ation	01
Lincor	Enables	the S-Curve to be displayed using linear	
Linear	interpola	ation	3 1

Figure 3-108 Histogram Weight

N		Histogram Weight	
Parameter		Description	Range
mode	Basic Mode	Basic Mode Windows that do not meet any region condition (Flag=0) apply HistWeight Else. Windows that meet the conditions of region1 apply HistWeight 1.	/

		Windows that meet the conditions of region2 apply				
		HistWeight 2.				
		Windows that meet the conditions of region3 apply				
		HistWeight 3.				
		Windows that meet the conditions of region4 apply				
		HistWeight 4.				
		These conditions can overlap.				
		In this mode, you have more flexibility to customize the				
	Advanced	mapping between Flag and HistWeight. It allows for the				
	Mode	addition of up to 16 curves.	/			
Region	Number of	enabled regions. This parameter controls the number of				
Number	regions in a	auto mode.	0~4			
L ouv/high	Threshold values for each region, corresponding to the x-axis of the					
Low/mgn	histogram weight curve.					
	Proportion threshold for each region. It determines whether the window is					
Threshold	classified based on the proportion of pixels falling within the brightness					
	range.					
Y Max						
Range	Maximum value for the Y-axis display range of histogram weight curve.					
Control						
Points	Points Number of control points for adjusting the histogram weight curve.					
	Enables con					
	You can ed	it ROI coordinates by importing an image and selecting the				
Enable ROI	area.					
	Allows vie	wing of block information, displaying the Flag information of				
	each windo	ow in the upper-left corner. Supports importing and exporting				
Debug	images for	easy identification of regions of interest based on Flag status.				

The specific weight for each brightness interval are divided into 63 segments, numbered from 0 to 62 to represent increasing brightness. The data in the table on the left corresponds to the data in the curve on the right. It is recommended to use the curve for coarse adjustments and the table for finer adjustments. When increasing the weight of a brightness interval, more dynamic range is allocated to pixels in that brightness interval, leading to an increase in local contrast. However, this may result in compression of the dynamic range in other brightness intervals.

Region Number: The number of enabled intervals, ranging from a minimum of 0 to a maximum of 4. Note: In "auto" mode, this parameter controls the number of regions.
- Low/high: The brightness threshold for each interval, with a range of [0, 62], corresponding to the horizontal axis of the histogram weight curve.
- Threshold: The proportion threshold for each interval, determining whether the window is classified based on the proportion of pixels falling within the brightness interval.

Example 1: Filtering windows with low brightness

Low=0; high=40; threshold=0.7

In this case, if pixels with brightness lower than 40 in a window account for more than 70%, the condition is met. Obviously, the overall brightness of the window is low, so a histogram weight for brightening can be configured.

Example 2: Filtering windows with high brightness

Low=30; high=62; threshold=0.7

In this case, if pixels with brightness higher than 30 in a window account for more than 70%, the condition is met. Obviously, the overall brightness of the window is high, so a histogram weight for darkening can be configured.

Example 3: Filtering windows with large brightness contrast (backlit face)

Low1=0; high1=20; threshold0=0.3;

Low2=50; high2=62; threshold1=0.3;

In this case, if pixels with brightness lower than 20 account for more than 30% and pixels with brightness higher than 50 account for more than 30% in a window, the condition is met. Corresponding histogram weights can be configured accordingly.

Each window can simultaneously meet multiple interval conditions, dividing all windows into 2ⁿ categories based on the proportion of windows that meet the conditions. Up to 16 categories can be defined.

Debug: View block information.

displaying the Flag information of each window in the upper-left corner. Supports importing and exporting images for easy identification of regions of interest based on Flag status.

Figure 3-109 Debug

Figure 3-110 High Freq Enhance

Parameter	Description	Range
Detail Sigma Dis	Spatial filtering coefficient for detail enhancement	0~65535
Detail Sigma Val	Value filtering coefficient for detail enhancement	0~65535
Detail Gain Pos	Positive detail enhancement	0~255
Detail Gain Neg	Negative detail enhancement	0~255
Detail Coring Pos	Positive detail suppression	0~65535
Detail Coring Neg	Negative detail suppression	0~65535
Detail Gain Limit Pos	Positive detail enhancement limit, larger value means smaller limit	0~65535
Detail Gain Limit Neg	Negative detail suppression limit, larger value means smaller limit	0~65535
Detail Extra Str Pos	Specified positive detail enhancement intensity	0~65535
Detail Extra Str Neg	Specified negative detail enhancement intensity	0~65535
Slope Level	Gradient control coefficient□ Higher slope retains details better.	
	Lower slope retains details poorly.	0~65535
Slope Strength Lut	Adaptive gradient control, adjusts detail strength based on the slope of the current position curve	0~65535

Coef S-Curve Histogram Weight High Freq Enhance Low Freq E	nahance Debug		
Detail Low En 🖂		Down Sample Ratio	1
Detail Gain Pos Low	0	Sigma Dis Blur	65535
Detail Gain Neg Low	96	Sigma Dis Pst	= 1
Detail Limit Pos Low	0	Sigma Val Pst	65535
Detail Limit Neg Low	10240	Coeff Win Rad	5
		Coeff Eps	200

Figure 3-111 Low Freq Enhance

	Low Freq Enhance	
Parameter	Description	Range
Detail Low En	Low-frequency enhancement switch	0/1
	Low-pass filtering sampling window size	
Down Sample Ratio	0: Output H/16×W/16	
	1: Output H/32 × W/32	0/1
Detail Gain Pos Low	Positive low-frequency enhancement	0~255
Detail Gain Neg Low	Negative low-frequency enhancement	0~255
Detail Limit Deg Low	Positive low-frequency enhancement limit, larger value	
Detail Limit Pos Low	means smaller limit	0~65535
Detail Limit Neg Lovy	Negative low-frequency suppression limit, larger value	
Detail Limit Neg Low	means smaller limit	0~65535
Sigma Dia Plur	Low-frequency enhancement anti-temporal motion	
Sigilia Dis Blui	parameter	0~65535
Sigma Dia Dat	Low-frequency enhancement spatial filtering coefficient	
SigmaDis Pst	for detail extraction	0~65535
Sigma Val Pst	Low-frequency enhancement value filtering coefficient	0~65535
Coeff Win Rad	Low-frequency extraction window	0~5
Cooff Eng	Low-frequency filtering parameter, smaller value results	
Coeff Eps	in more natural low-frequency enhancement	0~65535

3.12.4 Debugging Steps

- 1. Rough adjustment of overall brightness:
 - a) Adjust the overall image brightness through post_gamma and Highlight Sup.
 - b) Adjust Rltm Strength and Base Gain correspondingly to achieve the desired intensity, ensuring that the overall brightness is within a reasonable range.

- c) Repeat steps a and b to roughly adjust the overall brightness, ensuring that the distribution of light and dark areas is relatively appropriate.
- 2. Adjusting detail enhancement:
 - a) Adjust Slope Strength Lut and Slope Level to preserve details.
 - b) Further adjust Detail Extra Str to enhance overall details as needed.
 - c) Positive and negative details can be adjusted separately.

3. Adjusting low-frequency details:

- a) Adjust Detail Gain Pos/Neg Low parameters to adjust the strength of low-frequency enhancement.
- b) Adjust Sigma Dis Blur to balance the contrast between moving and static areas.
- c) Positive and negative details can be adjusted separately.

4. Global brightness adjustment:

When adjusting the overall brightness, use S-Curve for adjustment, preferably as the final step in tuning.

3.12.5 Auto mode

Parameter Description

🖸 RLTM Auto Table Editor – 🗆 X												
Paran Group Nuns 10 🗘												
	0	1	2	3	4	5	6	7	8	9	10	11
RefVal	1024	2048	4096	8192	16384	32768	65536	131072	182272	262144	1024	1024
RltmStrength	80	80	80	80	72	66	48	48	40	40	0	0
ContrastStrength	42	44	48	48	44	40	32	32	32	32	0	0
KMax	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	256	256
PreGamma	32	32	32	32	32	32	32	32	32	32	32	32
ExtraDgain	16	16	16	16	16	16	16	16	16	16	16	16
LocalFactor	104	104	104	104	110	80	80	80	80	80	0	0
BaseGain	32	1	1	1	1	1	32	64	64	64	1	1
Offset	72	72	72	72	72	72	72	72	72	72	0	0
HighlightSup	1	20	25	20	20	20	20	20	20	20	0	0
PostGamma	32	32	32	32	32	32	36	36	36	36	32	32
DitherMode	No Dither V	No Dither ~	No Dither V	No Dither 🗸 🗸	No Dither V	No Dither ~	No Dither V	No Dither V	No Dither ~	No Dither	No Dither	 No Dither
DitherScaler	4	4	4	4	4	4	4	4	4	4	0	0
SCurve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve	Edit S Curve
HistogramWeight	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt	Edit Hist Wt
HistWeight Bright Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params	Edit Params
DetailSigmaDis	9000	9000	9000	9000	9000	9000	9000	9000	9000	9000	0	0
DetailSigmaVal	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	0	0
DetailGainPos	20	20	20	20	10	10	0	0	0	0	0	0
DetailGainNeg	40	40	40	40	20	20	10	0	0	0	0	0
DetailCoringPos	0	0	0	0	0	0	0	0	0	0	0	0
DetailCoringNeg	100	100	100	100	100	100	100	100	100	100	0	0
DetailGainLimitPos	2560	2560	2560	2560	2560	2560	2560	2560	2560	2560	0	0
DeatilGainLimitNeg	10240	10240	10240	10240	10240	10240	10240	10240	10240	10240	0	0
DetailExtraStrPos	0	0	0	0	0	0	0	0	0	0	0	0
DetailExtraStrNeg	30	30	30	30	30	30	30	30	30	30	0	0
SlopeLevel	0	0	0	0	0	0	0	0	0	0	0	0
SlopeStrengthLut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut	Edit Lut
DetailLowEn												
DetailGainPosLow	0	0	0	0	0	0	0	0	0	0	0	0
DetailGainNegLow	96	96	96	72	48	0	0	0	0	0	0	0
DetailLimitPosLow	0	0	0	0	0	0	0	0	0	0	0	0
DetailLimitNegLow	10240	10240	10240	10240	10240	10240	10240	10240	10240	10240	0	0
SigmaDisBlur	65535	65535	65535	65535	65535	65535	9000	9000	9000	9000	1	1
SigmaDisPst	1	1	1	1	1	1	1	1	1	1	0	0
SigmaValPst	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	0	0
<												>

Figure 3-112 Automatic parameter configuration table

Tuning Method

- **1.** Select the appropriate Ref Mode.
- 2. Adjust a set of suitable values under the current illumination/gain and record the Ref Val.
- **3.** Click "Edit Auto Algorithm Table" to open the "Auto Algorithm Table Editor" data table.
- 4. Add a row to the data table, fill in the Ref Val and parameter sections, then click "OK" to

confirm.

5. Click "Export Parameters" to save the modifications in the .h file."Edit Auto Algorithm Table" Data.

3.13 Demosaic

3.13.1 Introduction

The Demosaic module comprises three sub-modules: Demosaic, FCC, and GIC. The Demosaic submodule interpolates data from the raw domain to the RGB domain, while the FCC and GIC submodules are used to optimize and improve pseudo-colors and grid or maze patterns caused by Demosaic interpolation.

Stad

3.13.2 Interface

σ

a ×

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

3.13.3 Parameter

Parameter	Description	Range
Enable Demosaic	Demosaic switch.	0, 1
Enable FCC	Toggle switch for the FCC feature	0,1
Enable GIC	Toggle switch for the GIC feature	0, 1
working mode	Auto/Manual working mode	/
ref mode	Lux/Gain	/
Freq Sensitivity	Intensity of frequency separation	0~16
Edge Dir Estimation Strength	Strength of edge direction estimation. A higher value indicates higher intensity	0~255
Edge Dir Estimation Strength Strength Lut	Sets different detection strengths based on different luminance LUTs. A higher value corresponds to a higher strength. The luminance LUT is divided into 8 parts with 9 points each, ranging from 0 to 255.	0~4095
working mode	Auto/Manual working mode	/
ref mode	Lux/Gain	/
False Color Limit	Limit for false color correction	0~4095
False Color Strength	Strength of false color suppression. A higher value indicates higher suppression intensity.	0~255
False Color Sat Lut	Controls the saturation of false colors based on luminance. A higher value leads to greater saturation suppression. The luminance LUT is divided into 8 parts with 9 points each, ranging from 0 to 255.	0~4095
working mode	Auto/Manual working mode	/
ref mode	Lux/Gain	/

Parameter	Description	Range
GIC Strength Lut	Sets the strength of G-channel imbalance correction based on LUT. A higher value indicates greater correction strength. The luminance LUT is divided into 8 parts with 9 points each, ranging from 0 to 255.	0~128

- Freq Sensitivity: The blending ratio between traditional interpolation methods and biased high-frequency texture interpolation. A smaller value leans towards traditional interpolation, while a larger value leans towards high-frequency texture interpolation.
- Edge dir est strength: The stronger the strength, the weaker the zipper effect, reducing the likelihood of discontinuities, but it may result in some loss of sharpness.

Figure 3-116 Edge dir est strength (0, 255)

- Edge dir est strength Lut: Similar to Edge dir est strength, the stronger the strength, the weaker the zipper effect, reducing the likelihood of discontinuities, but it may result in some loss of sharpness. It works in conjunction with Edge dir est strength.
- False Color Limit: The difference threshold for false color correction. If the difference is smaller than this value, false color correction is applied; otherwise, it is not. The recommended value is 512.

- False Color Strength: The strength of false color correction. A higher value enhances the ability to remove false colors but may affect high-frequency colors.
- False Color Sat Lut: Removes false colors within the saturation range based on different luminance levels.
- > Enable GIC: Switch to enable G-channel imbalance correction.
- GIC Strength Lut: A lookup table for G-channel imbalance correction strength coefficients. The X-axis represents luminance, and the Y-axis represents the correction strength coefficient. A higher value indicates stronger correction, but it may also affect sharpness.

3.13.4 Debugging Steps

Step 1

- Adjust the Edge dir est strength and Edge dir est strength lut parameters in the Demosaic module to ensure that strong edges do not exhibit obvious discontinuities or zipper effects.
- Adjust the Freq Sensitivity value to ensure that there are no obvious discontinuities in highfrequency areas.

Step 2

- In the FCC module, set the False Color Limit value to 512 and adjust the False Color Strength and False Color Sat Lut to clean up pseudo colors as much as possible without affecting highfrequency colors.
- Observe whether there are moiré patterns or maze patterns in flat areas of the image. If so, adjust the GIC Strength Lut to eliminate these patterns.

3.13.5 Auto mode

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode

- Parameter
 - Manual: Manual mode, allows for freely adjusting parameters.
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- ➢ Ref Mode
 - Selection of reference value type. This value affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Ref Mode=0 represents using Lux: In this case, Ref Val in the Auto Algorithm Table actually represents Lux. This parameter changes with the illuminance.
 - Ref Mode=1 represents using Gain: In this case, Ref Val in the Auto Algorithm Table actually represents gain. T This parameter changes with the gain.
- When Ref Mode uses Gain, the Gain here is Total Gain (current Again × current Dgain × current ISPGain × LCGHCGRatio).
- ➢ Ref Val

Displays the current numerical value of Ref Val.

3.14 Depurple

3.14.1 Introduction

A module for removing purple fringing in the raw domain, supporting both purple fringing region detection and correction.

Detection Functionality: Supports PFD feature for identifying purple fringing areas.

Correction Functionality: Receives purple fringing region masks from the PFD output, and performs CLC correction within the masked regions.

3.14.2 Interface

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

3.14.3 Parameter

Parameter	Description	Range
Enable Depurple	Depurple switch	0.1
Working Mode	Manual/Auto	0.1
Ref Mode	LUX/GAIN	0,
Depurple Mode	ON/OFF, effective when Enable Depurple is on	0.1
Edit Auto Algorithm Table	Configure auto parameter table	
	Normal: Standard width for purple fringing detection	
Detection Mode	Narrow: Narrower width for purple fringing detection	
	(recommended)	1
Detect Mask Strength	Strength of the current frame mask detection	0~511
Detect Pre Mask Strength	Strength of the previous frame mask detection	0~127
Detect Edge Slope V	Slope of edge luminance (Y) detection, higher values	
Detect Luge Slope 1	indicate higher detection strength	0~127
Detect Edge Offset V	Offset of edge luminance (Y) detection, higher values	
	indicate higher detection strength	-128~0
Detect Edge C Enable	Enable switch for edge color detection	0.1
Detect Edge Slope C	Slope of edge color (UV) detection, higher values	
Detect Edge Slope C	indicate higher detection strength	0~127
Detect Edge Offset C	Offset of edge color (UV) detection, higher values	
	indicate higher detection strength	-128~0
Detect Seledge Y Slope	Slope of edge luminance (Y) detection threshold	0~127
Detect Seledge Y Thr	Threshold of edge luminance (Y) detection	0~16383
Detect Seledge Weight	Weight of edge detection for the current frame	0~127
Detect Pre Mask Weight	Weight of edge detection for the previous frame	0~127
Luma Ratio Lut	Weight adjustment based on luminance	0~128
Angle Ratio Lut	Weight adjustment based on hue	0~128
Sat Ratio Lut	Weight adjustment based on saturation	0~128
Compo Strongth	Correction fusion strength parameter, higher values	
	indicate stronger correction	0~128
Highlight Mask Enable	Enable switch for highlight mask display	0.1
Highlight Mask Thr	Highlight mask threshold	0~16

3.14.4 Debugging Steps

1) Debugging the Purple Edge Region:

1. Enable Highlight Mask by turning on Highlight Mask Enable and adjusting Highlight Mask Thr to the maximum.

- 2. Configure Detect Seledge Y Thr to be between 180 and 200.
- 3. Set Detect Seledge Y Slope to 1.
- 4. Adjust Detect Edge Offset Y to around -30.
- 5. Set Detect Edge Slope Y to around 10 (C channel can be set to match Y channel).
- 6. Fine-tune Detect Mask Strength to ensure that the purple edge area can be detected.

2) Adjusting Luma Ratio Lut, Angle Ratio Lut, and Sat Ratio Lut:

1. Increase the weights for high luminance, hue, and saturation regions where purple edge removal is needed.

2. Ensure that the adjustments result in effective purple edge removal.

Figure 3-119 Depurple Effect

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode
 - Parameter

- Manual: Manual mode, allows for freely adjusting parameters.
- Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- ➢ Ref Mode
 - Selection of reference value type. This value affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Ref Mode=0 represents using Lux: In this case, Ref Val in the Auto Algorithm Table actually represents Lux. This parameter changes with the illuminance.
 - Ref Mode=1 represents using Gain: In this case, Ref Val in the Auto Algorithm Table actually represents gain. T This parameter changes with the gain.
- When Ref Mode uses Gain, the Gain here is Total Gain (current Again × current Dgain × current ISPGain × LCGHCGRatio).

➢ Ref Val

Displays the current numerical value of Ref Val.

3.15 Color Correction

3.15.1 Introduction

Color Correction is a color adjustment module that offers both traditional color correction methods using CCM matrices and separate adjustment functions based on 16 hue angles.

- It supports color transformation, where each color can be configured using a color matrix with 360/16-degree options.
- ▶ Low-power mode is available, which does not utilize color matrix interpolation.
- > It can take input for purple fringe correction from NPU/PFD masks.
- > NPU/PFD mask size scaling is supported.

- > It offers purple fringe correction area display for IQ tuning.
- The module can use mask level, luma, hue, and saturation configurations to adjust NPU/PFD mask effects.

3.15.2 Interface

Figure 3-120 Color Correction

3.15.3 Parameter

Parameter	Description	Range
Enable CLC	Enable CC	0 1
Working Mode	Manual/Auto	/
Ref Mode	Gain/Lux	/
Mode	Basic Mode/Advanced Mode	/
Edit Auto Algorithm	Automatic clearithm configuration table	
Table	······································	/

Parameter	Description	Range
Edit Special Light Source	Configuration of special light sources	/
Light Source Ratio	Light source ratio	0~256
Luma Datia	Luma Ratio[0]	0~128
Luma Katio	Luma Ratio[1]	0~128
Hue	Global hue adjustment parameter	-1920 -1920
Sat	Global saturation adjustment parameter	-61~64

Mode: Color calibration working mode.

■ Basic Mode: The basic mode utilizes a general matrix correction method, offering a relatively simple debugging process. It is suitable for most color restoration scenarios or applications.

Advanced Mode: The advanced mode provides finer control over local color aspects such as hue and saturation based on different angles. The debugging process is relatively complex and is suitable for scenarios or applications with higher color restoration requirements.

Figure 3-122 Color Correction Advanced Mode

- Light Source Ratio:
 - 0.0: auto_mode0(color temp, lux/gain);
 - 1.0: auto_mode1(light source);
 - $0 \sim 1.0$: blending with automode0 and automode1;
- Luma Ratio: A parameter affecting the calculation of hue and saturation in both basic and advanced color adjustment settings. The default value is [0.3, 0.59, 0.11], with a range from 0.00 to 1.00. It is generally not recommended to adjust this parameter under normal circumstances.

3.15.4 Auto mode

Parameter Description

- ➢ Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.

- Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- ➢ Ref Mode
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.
- ➢ Ref Val
 - Displays the current numerical value of Ref Val.
- > Auto Algorithm Table:
 - Grouped according to CCT into several sets. Each set can be further divided into subgroups based on RefVal, and the ColorPreference and CCM matrix for each subgroup can be set individually.

Clc Auto	Table	Editor Gro	uped int	o 6 sets acc	ording to	temperature	Currently displayed and modified set is Group0 –
lor Temper	rature	e Group Nu	ns 6	Color	Temper	ature Group	Index 0 v Import Expor
f Value G	roup M	luns 3 🗘			Grout	ned into sev	eral sets according to refValue, and colorPreferenceTable
Color Temp	eratu	re Group			and co	em matrix e	in be configured separately
Color Temp	eratu	re		\neg	=		2300
		0	1	2	$\overline{\ }$		
Ref Value	472	192 808	472	1079296	satLa	ble is used	for naming only and cannot change saturation
Sat. Label	120	90		60			
	_		+	0			1 2
Color Pret	ferenc	e Table E		or Prefere	nce Tab	le Edit Color	Preference Table Edit Color Preference Table
-CCM Group	p			-			
		0		1		2	X'O
Red 0	95	0.3711	95	0.3711	95	0.3711	
Red 1	-123	-0.4805	-123	-0.4805	-123	-0.4805	
	107	0. 1000	107	0. 1000	107	0. 1000	
Green 0	-197	-0.7695	-197	-0.7695	-197	-0.7695	
Green 1	8	0.0313	8	0.0313	8	0.0313	
Blue 0	14	0.0547	14	0.0547	14	0.0547	
Blue 1	-425	-1.6602	-425	-1.6602	-425	-1.6602	

Figure 3-123 Cle Auto Table

- > Special Light Source:
 - Up to 12 sets of special light sources can be added, supporting the configuration of corresponding Sat, Hue, and CCM matrix for each light source group.

3.16 2dLut

3.16.1 Introduction

2dLUT is a module used to correct color effects or color preferences.

3.16.2 Homepage

3.16.3 Parameter Description

In the Manual interface, you can adjust the corresponding hue and saturation by dragging points on the color palette on the right side. In the color palette, different angles represent different colors.

Extending from the center of the circle outward, the saturation increases from low to high. The Hue/Sat

Lut supports import, export, and reset operations.

Figure 3-126 Color Picker Demo

Parameter	Description	Range
Enable	Enable	\
Working Mode	Manual/Auto	\
Ref Mode	Lux/Gain	\
Edit Auto Algorithm Table	Configure auto parameter table	\

Converge Speed	Unit: Number of frames. If the number of frames less than the convergence threshold is greater than the converge speed, then convergence is considered complete.	0~10
Gain Trigger	Gain threshold: triggers convergence when the gain difference between successive frames exceeds this threshold.	Stack
Lux Trigger	Lux threshold: triggers convergence when the lux difference between successive frames exceeds this threshold.	
CCT Trigger	CCT threshold: triggers convergence when the CCT difference between successive frames exceeds this threshold.	
RGB	Not adjustable, displays the RGB values of the selected area.	\
HSV	Not adjustable, displays the HSV values of the selected area.	\
LAB	Not adjustable, displays the LAB values of the selected area.	\

3.16.4 Auto mode

÷

The automatic mode for 2D LUT is divided into two levels of triggers:

- First, based on Lux/Gain refVal, it can be divided into up to 12 groups. \triangleright
- Within each group, it can be further divided into up to 16 sub-groups based on CCT, with each \triangleright

sub-group having its own Hue Table and Sat Table set individually.

Linear interpolation is performed between groups.

_																
ef List Nums 1	😫 Ref Val	ie Group Nums	Index 0 🗸												I	mport
	0	1	2	3	4	5	6	7	8	9	10	11				
Ref Start Val	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024				
Red End Val	2048	0	0	0	0	0	0	0	0	0	0	0				
															-7-	
															7	
CT List Nums 1															3	
CT List Nums 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CT List Nums 1 CCT Start	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CT List Nums 1 CCT Start CCT End	0 5000 6000	1 5000 6000	2 5000 6000	3 5000 6000	4 5000 6000	5 5000 6000	6 5000 6000	7 5000 6000	8 5000 6000	9 5000 6000	10 5000 6000	11 5000 6000	12 5000 6000	13 5000 6000	14 5000 6000	15 5000 6000
CT List Nums [] CCT Start CCT End Hue Table	0 5000 6000 Edit Hue	1 5000 6000 Edit Hue	2 5000 6000 Edit Hue	3 5000 6000 Edit Hue	4 5000 6000 Edit Hue	5 5000 6000 Edit Hue	6 5000 6000 Edit Hue	7 5000 6000 Edit Hue	8 5000 6000 Edit Hue	9 5000 6000 Edit Hue	10 5000 6000 Edit Hue	11 5000 6000 Edit Hue	12 5000 6000 Edit Hue	13 5000 6000 Edit Hue	14 5000 6000 Edit Hue	15 5000 6000 Edit Hue

Figure 3-127 CBLut Auto Table

3.17 Gamma

3.17.1 Introduction

The gamma curve is a type of tone curve. When the gamma value is equal to 1, the curve forms a straight line at a 45° angle to the coordinate axis, indicating that the input and output luminance are the same. Gamma values higher than 1 will increase the output luminance, while gamma values lower than 1 will decrease the output luminance.

The Gamma module maps the RGB channels separately in the Linear RGB domain, transforming the image into the sRGB domain. In the gamma mapping process, all three RGB channels share the same mapping curve.

3.17.2 Interface

3.17.3 Parameter

Parameter		Description
Gamma Mode	User Gamma	Customized Gamma
		Preset Gamma refers to a set of predefined gamma curves
		that you can choose from. There are typically seven options
		available for selection. SDR gamma2 and HDR gamma1
	Preset Gamma	are often recommended choices.
Work Mode	Manual/Auto	Manual/Automatic mode
Ref Mode Gain/Lux		Gain/Lux as reference values

		The spacing between the sampling points on the X-axis of				
Lut Mada	Linear	the gamma curve remains uniform				
Lut Widde		The spacing between the sampling points on the X-axis of				
	Exponential	the gamma curve increases exponentially				
Edit Auto		fithe automatic generation and figure tion table				
Algorithm Table	Allows editing c	Allows editing of the automatic parameter configuration table				

The Gamma parameter allows for custom gamma mapping, where the output values are typically in the u8 range. The gamma value corresponds to the shape of the gamma curve.

$$y = x^{\frac{1}{gamma \ value}}$$

For example, a gamma value of 2.2 corresponds to a specific curve shape: $y = x^{\frac{1}{2.2}}$

Figure 3-129 Gamma Curve

- Allows you manually modify the gamma table point by point.
- > The Current Curve feature enables you to import and export the current gamma settings.
- RefCurve: Provides preset reference gamma curves, displayed in gray on the coordinate graph on the right side, and supports exporting.

3.17.4 Auto mode

- ➢ Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters based on gain/luminance Lux serve as reference value Ref Val to select appropriate parameters.
- ➢ Ref Mode
 - For automatic mode, parameters based on gain/luminance Lux serve as reference value Ref Val to select appropriate parameters. Mode 0 is Lux, and mode 1 is Gain.
- Auto Algorithm Table
 - Can set three groups of gamma according to refVal

🙆 Gamma Auto	Table Editor				_		\times
	2			[Import	Expo	rt
	0	1	2				
Ref Value Start	1024	10240	102400				
Ref Value End	2048	15360	204800				
Gamma Lut	Edit Gamma Lut	Edit Gamma Lut	Edit Gamma Lut				
ter							

Figure 3-130 Gamma AutoTable

3.18 Dehaze

3.18.1 Introduction

The Dehaze module is primarily designed for haze removal in scenes affected by fog or haze. It helps

adjust the contrast and clarity of the image by reducing the haze, thereby enhancing visibility and improving overall image quality.

3.18.2 Interface

3.18.3 **Parameter**

Parameter	Description	Range
Enable	able Module switch, check to turn on	
Working Mode	Working Mode Choose between manual and automatic modes	
Ref Mode	Ref Mode Select whether to use gain or lux for interpolation	
Cala Mada	Choose between normal mode (traditional Algo) and	
Calc Widde	accelerated mode (accelerational Algo) for dehazing	0.1
	Parameter for estimating atmospheric concentration. A	
Air Reflect	higher value detects denser haze, resulting in stronger	
	dehazing	0~65280
Str Limit		
	Dehazing strength limit. Used in conjunction with Air	1~256

Parameter	Description	Range
	Reflect, where a higher Str Limit imposes a stronger limit	
	on dehazing strength, while a lower value imposes a weaker	
	limit	
Spatial Smooth	Strength of contrast smoothing after haze removal	0~3
Mesh size	Size of the statistical mesh used for calculations	16,32,64,128
Eps	Generally left unadjusted, 8192 by default	1~65535
Enable Blur	Enable motion compensation for regions affected by	
	motion	0.1
Sigma Blur	Strength of blur applied to motion regions, improving the	
	appearance of motion halos	1~65535
Effect Strength	Dehazing strength value	0~128
Gary DC Ratio	Recommended default value is 64	0~128
3.18.4 Debug	gging Method	

3.18.4 Debugging Method

If the CPU loading is high, it is advisable to use the accelerated mode. In this case, adjust the following parameters: Air Reflect, Str Limit, Effect Strength, and Gary DC Ratio. Air Reflect can be set to around 90% of its maximum value. Str Limit adjustment primarily involves observing the highlights; if they appear too bright, increase the intensity, and vice versa. Effect Strength is used to adjust the dehazing strength, where larger values result in stronger dehazing. Keep Gary DC Ratio at its default value.

If using the traditional mode, set the mesh size to 32 for optimal dehazing performance. If halos appear, reduce Spatial Smooth. If there are moving objects causing significant changes in the dehazing effect, enable Blur and increase Sigma Blur to reduce the image changes caused by motion.

3.19 Csc

3.19.1 Introduction

Color Space Convert, a module for converting from the RGB domain to the YUV domain; CSC

matrix parameter debugging. This module processes before Ycrt and handles luminance and chroma ranges, recommended to be processed in the YCRT module.

3.19.2 Interface

3.19.3 Parameter

Parameter	~	Description
UvSeqSel	NV12/NV21	YUV storing format
PL	Custom	User-defined
	BT601	Convert RGB to YUV according to the BT601 standard
Mode	BT709	Convert RGB to YUV according to the BT709 standard
	BT2020	Convert RGB to YUV according to the BT2020 standard

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

3.20 Color Adjust

3.20.1 Introduction

This module is used for color adjustment in the YUV domain; it allows for the adjustment of preferred colors through saturation and hue modification.

3.20.2 Interface

3.20.3 Parameter

Parameter	Description	Range
Enable CA	Enable CA	0 1
Working Mode	Manual/Auto	/
Ref Mode	Gain/Lux	/

Parameter	Description	Range
Edit Auto Algorithm Table	Automatic clgorithm configuration table	/
	Adjust the intensity level of color; the higher	
	the value, the greater the color impact. A	
	value of 0 turns off the adjustment, generating	
	a cmtx through hue and saturation	V
	adjustments, where the cmtx defaults to the	G
	identity matrix. A value of 256 represents the	XO
	maximum variation in the cmtx matrix when	S
Ctrl Level	adjusting hue and saturation.	0~256
Hue	Hue shift	-480~480
	Saturation adjustment, the higher the value,	\sim
Sat	the greater the saturation; conversely, the	
	lower the value, the less the saturation.	-800~800
Curretur	The color matrix generated for adjusting hue	
Cmix	and saturation.	/

Debugging Suggestions: When the cmtx is an identity matrix, the CA module does not adjust the color. This module can significantly affect the overall color of the image, so parameter adjustments It hur should be made cautiously.

3.21 Yuv3DNr

3.21.1 Introduction

Yuv3DNr performs spatio-temporal denoising in the YUV domain, using motion or still region luminance and chrominance noise reduction based on motion masks generated by motion detection or external masks. If LCE (including Sharpen) is placed before Y3DNR, the processing flowchart of Yuv3Dnr is as shown in the figure below.

Figure 3-134 Yuv3Dnr Handling Process

Above is the Yuv3Dnr denoising process.

- 1. SF0: Suitable for low-frequency noise reduction.
- 2. SF1: Suitable for high-frequency noise reduction.
- 3. TF0: Perform temporal filtering on the SF0 result using the reference frame.
- 4. Combination: Upsample the SF0 result, add it to the SF1 result, and send it to LCE for sharpening. After sharpening, continue to perform TF1 using the reference frame.
- 5. SF2: Perform final denoising and output.
- ! Note: The LCE module mainly includes the following components: Yuv2dnr, Sharpen, 2dLut, CCMP, and Clp modules.

3.21.2 Interface

Figure 3-135 Yuv3Dnr_TF

3.21.3 Parameter

1. TF Parameter Description

Parameter		Range			
Working Mode	Manual/Auto	/			
	This value determines the	pasis for Ref Val in the Auto Algorithm			
	Table.				
Ref Mode	When Ref Val is Lux, curre				
	illuminance.				
	When Ref Val is gain, curr	/			
Edit Auto					
Algorithm	Allows editing of the autor				
Table					
Enable TF	Temporal denoising enable switch				
		TF Ratio Limit Luma Foreground[0] [1]	0~255		

TF Ratio Limit Luma Foreground	Temporal ratio limit for foreground luminance	Affects the TFRatio calculation result for the foreground, impacting the temporal intensity for the foreground.	0~255				
		TF Ratio Limit Luma Background[0]	0~255				
TF Ratio Limit		[1]					
Luma Background	Temporal ratio limit for background luminance	Affects the TFRatio calculation result for the background, impacting the temporal intensity for the background.	0~255				
	Represents the mixing ratio	b between the current frame and the					
	reference frame. A larger v						
TE Ratio Lut	frame, resulting in weaker						
	represents the accumulated calculation value of the current frame						
	status. A larger value indicates a higher likelihood of being a still						
	region.	XON	0~255				

2. Motion Detection Parameter Description

Motion Detection				
Enable Motion Detect	Motion detection switc	Motion detection switch		
External Mask				
Enable	External mask switch		01	
External Mask Mode	AI 3DNR Mask/ HDR	Mask	/	
External Mask Stren				
Luma	External Y-domain mot	tion mask strength	0~255	
		The fusion ratio between the		
External Mark Datio		external Y-domain motion mask and		
Lyma		the YUV3D motion mask. A larger		
Luilla	External Mask Ratio	value indicates a higher proportion		
	Luma[0][1]	of the External Mask.	0~256	
External Mask Stren		0- 0		
Chroma	External UV-domain m	otion mask strength	0~255	
		The fusion ratio between the		
External Mark Datio		external UV-domain motion mask		
Chrome		and the YUV3D motion mask. A		
Cirionia	External Mask Ratio	larger value indicates a higher		
	Chroma[0][1]	proportion of the External Mask.	0~256	
External Mask Stren				
Status	External mask status strength		0~255	
		The fusion ratio between the		
External Mask Stron	External Mask Patio	external motion mask and the		
Status	Statue[0] [1]	YUV3D motion mask. A larger		
Status	Status[0] [1]	value indicates a higher proportion		
	\mathbf{O}	of the External Mask.	0~256	
		Disable erosion based on the status		
	disable	results of the previous frame.	/	
		Perform a 3x3 erosion based on the		
Status Refine Frode		status results of the previous frame		
Status Kernie Erode	erode 3x3	to expand the motion mask outward.	/	
*		Perform a 5x5 erosion based on the		
		status results of the previous frame		
	erode 5x5	to expand the motion mask outward.	/	
Status Converge	Controls the convergence speed of the transition area			
Speed	between the current fra	me and the previous frame's status.	0~255	
	A control table for the s	score counter of the current pixel		
Status Update Lut 0	status in motion detecti	on. When the current pixel is		
	determined to be in a stationary state, it gets a score, with a		0~15	

	maximum score of 15 i		
	state, where temporal e		
	determine the confident		
	motion state over conse		
	result, the more likely i		
	of 16 frames. When the	current frame is determined to be	
	stationary, the status cu	mulative value increases by the	1
	corresponding value on	the vertical axis. The horizontal axis	
	represents the current s	tatus cumulative value.	
	A control table for the s		
	status in motion detecti	on. When the current pixel is	
	determined to be in mo	tion, it gets a penalty, subtracting the	
	value set in the table. T	his is used to look up the Status	
Status Update Lut 1	Update Lut 0 for furthe	r counting based on the pixel's status	
	value. When the curren	t frame is determined to be in motion,	
	the status cumulative va	alue decreases by the corresponding	
	value on the vertical ax	is. The horizontal axis represents the	
	current status cumulativ	ve value.	0~15
		The mixing ratio of the current	
		frame's MotionMask and the	
		previous frame's Status in the Y	
		domain.	
	Example:		
		➤ [256,256]: Use only the	
	\sim	previous frame's status.	
		\succ [0,0]: Use only the current	
		frame's motion mask.	
SF Guide Map Luma		Setting other values will mix the	
		two.	
- Y		Adjusting this parameter can be	
		done using: echo 2 >	
		/tmp/yuv3dnr_debug_mode_0. In	
		debug mode, this shows the state of	
		the spatial denoising effect range of	
		the current image. Increasing or	
	SF Guide Map	decreasing this value will affect the	
	Luma[0][1]	effective range of spatial denoising.	0~256
SF Guide Map	SF Guide Map	The mixing ratio of the current	
Chroma	Chroma[0][1]	frame's MotionMask and the	0~256

		previous frame's Status in the UV	
		domain.	
		Its function is the same with that of	
		Y-domain Guide Map.	
		The strength of motion detection for	
		the foreground in the Y domain. The	
		larger the value, the more pixels in	
		the foreground are detected as	
		motion.	
		Note: The distinction between	
		foreground and background is	
		based on the status scoring	
		results, with a value of 0	
		indicating pure motion and a	
	Motion Det Stren	value of 16 indicating pure	
	Luma[0]	stillness.	0~255
		The strength of motion detection for	
		the background in the Y domain.	
		The larger the value, the more pixels	
		in the background are detected as	
Motion Det Stren		motion.	
Luma		Typically, the value of Motion	
		Det Stren Luma[0] is set higher,	
		and the value of Motion Det	
	\sim	Stren Luma[1] is set lower. This	
		ensures that foreground motion	
		is detected while preventing	
.0.5		large raindrop noise in the	
		background.	
		Adjusting this parameter can be	
		done using: echo 1 >	
		/tmp/yuv3dnr_debug_mode_0.	
		In debug mode, this shows the	
		current state of the motion mask	
		for the image. Increasing or	
		decreasing this value will affect	
	Motion Det Stren	the effectiveness of the motion	
	Luma[1]	mask.	0~255

		The limit range for motion detection	
		results in the Y domain is	
		recommended to be set from 0 to	
		256.	
		> To allow some temporal noise in	
		the stationary region with high	
Motion Det Limit		gain, you can increase Motion	1
Luma		Det Limit Luma[0]. Increasing	
		limit[0] raises the minimum	
		motion intensity, making it	
		easier to classify background	
		noise as a motion area, thereby	
	Motion Det Limit	reducing the temporal intensity	
	Luma[0][1]	of the background.	0~256
		The strength of motion detection for	
		the foreground in the UV domain.	
		The larger the value, the more pixels	
		in the foreground are detected as	
	Motion Det Stren	motion. The usage is the same with	
Motion Det Stren	Chroma[0]	that of Motion Det Stren Luma.	-255~255
Chroma		The strength of motion detection for	
		the background in the UV domain.	
		The larger the value, the more pixels	
		in the background are detected as	
	Motion Det Stren	motion. The usage is the same with	
	Chroma[1]	that of Motion Det Stren Luma.	-255~255
0		The limit range for motion detection	
Motion Det Limit		results in the UV domain is	
Chroma	Motion Det Limit	recommended to be set from 0 to	
	Chroma[0] [1]	256.	0~256
2		The fusion ratio of the motion	
		detection results between the Y and	
		UV domains.	
		Examples:	
Motion Det Blend		[0, 0]: Use only the UV	
Katio		channel's mask.	
	Motion Det Blend	[256, 256]: Use only the Y	
	Ratio[0][1]	channel's mask.	0~256

		Setting other values will blend	
		the masks from both the Y and	
		UV channels.	
		\succ It is recommended to use the	
		motion detection mask of the Y	
		channel.	
		The amplification factor for the	
Motion Det Smooth		motion mask of the	
Luma	Motion Det Smooth	foreground/background in the Y	
	Luma[0][1]	channel.	
		The amplification factor for the	
Motion Det Smooth		motion mask of the	
Chroma	Motion Det Smooth	foreground/background in the UV	
	Chroma[0][1]	channel.	
	The motion detection c	urve for the Y domain, where the	
	horizontal axis represen	nts luminance and the vertical axis	
Motion Det Noise Lut	represents the motion detection noise intensity. The larger the		
0	value on the vertical axis, the more likely it is for the		
	corresponding luminan	ce to be detected as noise, resulting in	
	stronger temporal filter	ing.	0~4095
	The motion detection c	urve for the UV domain, where the	
	horizontal axis represen	nts luminance and the vertical axis	
Motion Det Noise Lut	represents the motion d	letection noise intensity. The larger the	
1	value on the vertical ax	is, the more likely it is for the	
	corresponding luminan	ce to be detected as noise, resulting in	
	stronger temporal filter	ing.	0~4095
		-	L
t			
P '			

Figure 3-137 Yuv3Dnr_SF0

Figure 3-138 Yuv3Dnr_ SF1

YUV3DNR_SF0/SF1				
Enable SF0 YNR	SF0 YNR enable switch.			
Enable SF0 CNR	SF0 CNR enable swit	ch.	01	
	Weight for non-direct	ional edges/directional edges/non-		
	directional texture det	tails. Increasing this value increases the		
SF0 Edge Strength	weight for non-direction	ional edge detection. The larger the		
	value, the more areas	are detected as non-directional edges.		
	Recommended value:	Recommended value: 128.		
	Weight for non-direct	ional edges/directional edges/non-		
	directional texture det	tails. Increasing this value increases the		
SF0 Dir Strength	weight for directional	edge detection. The larger the value,		
	the more areas are det	tected as directional edges.		
	Recommended value:	128.	0~256	
	Weight for non-direct	ional edges/directional edges/non-		
	directional texture det	tails. Increasing this value increases the		
SF0 Detail Strength	weight for non-direction	ional texture detail detection. The larger		
	the value, the more ar	reas are detected as non-directional		
	texture details. Recommended value: 128.			
SEO Luma Noisa Lut	Denoising strength for flat regions in the foreground. The			
SFU Luilla Noise Lui	horizontal axis represents luminance, and the vertical axis			
riat rolegiound	represents denoising strength.			
SEO Luma Noise Lut	Denoising strength for flat regions in the background. The			
Flat Packground	horizontal axis represents luminance, and the vertical axis			
Flat Dackground	represents denoising strength.			
SEO Luma Noise Lut	Denoising strength for textured regions in the foreground.			
Detail Foreground	The horizontal axis represents luminance, and the vertical			
Detail Foreground	axis represents denoising strength.			
SEO Luma Noise Lut	Denoising strength for textured regions in the background.			
Detail Background	The horizontal axis represents luminance, and the vertical			
	axis represents denoising strength.		0~1023	
SF0 Luma Kernel	The size of the filter k	cernel for the foreground/background.		
Size[0][1]	The larger the value, t	the stronger the denoising effect.	0123	
		Gaussian filter denoising strength for		
SEO Luma Can Stranget		the foreground/background. The larger		
Si o Lunia Gau Stiength	SF0 Luma Gau	the value, the stronger the Gaussian		
	Strength[0] [1]	denoising effect.	0~256	
	SF0 Luma Blend	The ratio among edge-preserving		
SF0 Luma Blend Ratio	Ratio[0]:	denoising, Gaussian denoising, and the		
	Foreground edge-	original image blending in the	0~256	

	preserving	foreground should sum to 256. The	
	denoising strength	larger the value, the greater the	
		proportion of edge-preserving	
		denoising in the final output.	
		The ratio among edge-preserving	
		denoising, Gaussian denoising, and the	
	SF0 Luma Blend	original image blending in the	
	Ratio[1]:	foreground should sum to 256. The	
	Foreground	larger the value, the greater the	
	Gaussian denoising	proportion of Gaussian denoising in	
	strength	the final output.	0~256
		The ratio among edge-preserving	
		denoising, Gaussian denoising, and the	
		original image blending in the	
	SF0 Luma Blend	foreground should sum to 256. The	
	Ratio[2]:	larger the value, the greater the	
	Foreground original	proportion of the original image	
	image (non-	information in the final output,	
	denoised)	resulting in weaker denoising.	0~256
		The ratio among edge-preserving	
		denoising, Gaussian denoising, and the	
	SF0 Luma Blend	original image blending in the	
	Ratio[3]:	background should sum to 256. The	
	Background edge-	larger the value, the greater the	
	preserving	proportion of edge-preserving	
C	denoising strength	denoising in the final output.	0~256
6	<i>,</i>	The ratio among edge-preserving	
0.5		denoising, Gaussian denoising, and the	
	SF0 Luma Blend	original image blending in the	
	Ratio[4]:	background should sum to 256. The	
	Background	larger the value, the greater the	
	Gaussian denoising	proportion of Gaussian denoising in	
	strength	the final output.	0~256
		The ratio among edge-preserving	
	SF0 Luma Blend	denoising, Gaussian denoising, and the	
	Ratio[5]:	original image blending in the	
	Background original	background should sum to 256. The	
	image (non-	larger the value, the greater the	
	denoised)	proportion of the original image	0~256

		information in the final output,	
		resulting in weaker denoising.	
		SF0 foreground/background chroma	
SF0 Chroma Atten		noise reduction strength. The larger	
Strength	SF0 Chroma Atten	the value, the stronger the chroma	
	Strength[0] [1]	noise reduction.	0~1023
		SF0 foreground/background chroma	
SF0 Chroma Atten		noise reduction limit strength. The	
Limit	SF0 Chroma Atten	smaller the value, the stronger the	
	Limit[0] [1]	chroma noise reduction.	0~255
	LUT for foreground c	hroma noise reduction strength based	
SF0 Chroma Prot Lut	on luminance. The ho	rizontal axis represents luminance, and	
Foreground	the vertical axis repre	sents CNR strength. The larger the	
	value, the stronger the	e chroma noise reduction.	0~1023
	LUT for background	chroma noise reduction strength based	
SF0 Chroma Prot Lut	on luminance. The ho	rizontal axis represents luminance, and	
Background	the vertical axis repre	sents CNR strength. The larger the	
	value, the stronger the chroma noise reduction.		
Enable SF1 YNR	SF1 YNR enable switch.		01
Enable SF1 CNR	SF1 CNR enable switch.		01
	Enable switch for SF1 LumaMed. It is not recommended to		
Enable SF1 Luma Med	enable this under norr	nal illumination as it can significantly	
	damage details.		01
SE1 Luma Cou Strongth	SF1 Luma Gau	Gaussian denoising strength for the	
SFT Lunia Gau Strength	Strength[0] [1]	foreground/background in SF1	0~256
)	Fusion ratio between Gaussian	
		denoising and edge-preserving	
	SE1 Luma Cou	denoising for the	
SF1 Luma Gau Ratio	Detio[0] [1]	foreground/background in SF1. The	
	Katioloj [1]	larger the value, the stronger the	
		Gaussian denoising effect, and the	
		weaker the edge-preserving denoising.	0~256
	The size of the edge-p	preserving filter kernel in SF1. The	
SF1 Luma Kernel Size	larger the value, the more it tends toward low-frequency		
	edge-preserving deno	-preserving denoising.	
SF1 Luma Noise Lut	This LUT determines	the weight of edge-preserving	
Foreground/Backgroun	denoising strength influenced by luminance for the		
	foreground and background. The effectiveness of this		

	parameter is dependent on the Luma Gau Ratio not being set to 255.		
		Isolation point detection threshold for	
		foreground/background in SF1. If a	
		pixel value is greater than the	
SF1 Luma Idr Thre		surrounding pixels and exceeds this	
		threshold, it is considered an isolation	
	SF1 Luma Idr	point. The larger the value, the fewer	
	Thre[0][1]	isolation points are detected.	0~1023
		Isolation point suppression strength	
		for foreground/background. The	
		smaller the value, the stronger the	
SFI Luma Idr Gain		noise reduction on isolation points.	
	SF1 Luma Idr	This is used for denoising isolated	
	Gain[0][1]	noise.	0~256
		Uses the isolation point calculation	
		result to limit the strength of edge-	
	SF1 Luma Clip Level[0][1]	preserving denoising for	
SF1 Luma Clip Level		foreground/background. The smaller	
-		the value, the weaker the edge-	
		preserving denoising. The	
		recommended value is 1023.	0~1023
		Further noise suppression on the	
		overall foreground/background based	
	SF1 Luma	on previous denoising results. The	
SFI Luma Coring	Coring[0][1]	larger the value, the blurrier the image.	
		It is recommended to set this to 0 if	
05		noise is not severe.	0~1023
		Fusion ratio between the Gaussian	
		denoising/edge-preserving denoising	
		result and the original image for	
SF1 Luma Blend Ratio		foreground/background. The smaller	
	SF1 Luma Blend	the value, the larger the proportion of	
	Ratio[0] [1]	SF1 denoising results, leading to	
	_	stronger denoising. The larger the	
		value, the higher the proportion of	
		original image information, resulting	
		in weaker denoising.	0~256

SF1 Chroma Coring	The suppression strength of the chroma noise reduction result. The larger the value, the stronger the chroma noise	
_	reduction.	0~1023
SF1 Chroma Blend Ratio	The fusion ratio between the chroma noise reduction result	
	and the original image. The larger the value, the weaker the	
	chroma noise reduction.	0~256

Figure 3-139 Yuv3Dnr_ SF0_Detail_Str Effect

Figure 3-140 Yuv3Dnr_SF0_Edge_Str Effect

Figure 3-141 Yuv3Dnr_SF0_Luma_Noise_Lut Foreground De-noising Effect

Figure 3-142 Yuv3Dnr_SF0_Luma_Noise_Lut Background De-noising Effect

Figure 3-143 Yuv3Dnr_ SF1_Luma_Noise_Lut Background De-noising Effect

Figure 3-144 Yuv3Dnr_SF1_Luma_Idr_Gain Effect

Figure 3-145 Yuv3Dnr_ SF1_Luma_Coring Effect

Figure 3-146 Y3Dnr_SF2

Y3DNR_SF2			
Name	Description		Value
Enable SF2 YNR	Enable switch for SF2 den	oising	01
	The position of SF2 denois	ing in the pipeline:	
V2 day Dog	Before LCE: SF2 denoising	g will be applied before	Before
i sulli ros	sharpening.		LCE/After
	After LCE: SF2 denoising	will be applied after sharpening.	LCE
	Enable switch for SF2 Mee	lian filtering (Med). Enabling	
	this feature results in strong	ger denoising and is	
Enable SF2 Med	recommended for high-gain conditions. It is suggested to		
	keep this off under normal illumination to prevent		
	excessive detail loss.		01
		Gaussian filter strength for SF2	
SF2 Gau Strength		foreground/background. The	
SF2 Gad Strength		larger the value, the stronger	
	SF2 Gau Strength[0][1]	the Gaussian filtering.	0~256
		SF2 foreground edge-	
SF2 Blend Ratio		preserving denoising fusion	
	SF2 Blend Ratio[0]	ratio.	0~256
		SF2 foreground Gaussian	
	SF2 Blend Ratio[1]	denoising fusion ratio.	0~256

		SF2 foreground original image	
	SF2 Blend Ratio[2]	information fusion ratio.	0~256
		SF2 background edge-	
		preserving denoising fusion	
	SF2 Blend Ratio[0]	ratio.	0~256
		SF2 background Gaussian	
	SF2 Blend Ratio[1]	denoising fusion ratio.	0~256
		SF2 background original	L.
	SF2 Blend Ratio[2]	image information fusion ratio.	0~256
	The size of the edge-preser	rving denoising filter kernel for	
SF2 Kernel Size	SF2. The larger the value, the more it tends toward low-		
	frequency edge-preserving	denoising.	01
	LUT for the weight of edge	e-preserving denoising strength	
SE2 Noice Lut [0][1]	influenced by luminance for foreground/background. The		
SF2 Noise Lut [0][1]	horizontal axis represents luminance, and the vertical axis		
	represents edge-preserving	denoising strength.	0~1023
2.21 A. Dahugging Stong			
5.21.4 Debugging Steps			
. Motion detection:			
1) In THSP mode motion detection primarily relies on the Motion Detection module in			

3.21.4 Debugging Steps

- 1. Motion detection:
 - In TIISP mode, motion detection primarily relies on the Motion Detection module in 1) Yuv3Dnr. In this mode, there is no External Mask, so you need to disable External Mask Enable or set the values in External Mask Ratio Luma/Chroma/Status to 0, as shown below:

Figure 3-147 Yuv3Dnr_ TIISP_Motion Detection Configuration

2) Configure the Motion Detect score table. The recommended configuration is as follows:

Figure 3-148 Yuv3Dnr_ Motion Detection_Status Update

- 3) Configure Motion Det parameter:
 - ▶ Using Y Channel Motion Detection Results: Set Motion Det Blend Ratio[0][1] to 256.
 - ▶ Using UV Channel Motion Detection Results: Set Motion Det Blend Ratio[0][1] to 0.
 - > Blending Y and UV Channel Motion Detection Results: Set to other values for blending.

Motion Det Stren Luma	0	0	Motion Det Limit Luma	0	256
Motion Det Stren Chroma	0	0	Motion Det Limit Chroma 🗖	0	256
Motion Det Smooth Luma	2	1	Motion Det Blend Ratio	256	256
Motion Det Smooth Chroma	2	1			

Figure 3-149 Yuv3Dnr_ Motion Detection Configuration

It is recommended to use the Y channel for motion detection. The suggested configuration parameters are shown in the figure, where the parameters within the red box do not need further adjustment. Fine-tune Motion Det Stren Luma and Motion Det Smooth Luma according to the motion detection results.

4) Configure Mot Det Noise Lut

Motion Det Noise LUT Luma/Chroma: These tables are the motion detection curves for the Y and UV domains, respectively. The larger the value on the vertical axis, the more likely the corresponding luminance is judged as a stationary region. During debugging, it is suggested to first configure the Mot Det Blend Ratio to use only the Y mode and adjust the first curve. Then configure

it to use only the UV mode and adjust the second curve.

Figure 3-150 Yuv3Dnr_ Motion Detection Configuration

In AIISP mode, the Motion Detect parameter configuration can refer to the figure above. The recommended configuration for External Mask Detect parameters is as shown in the green box, which mainly relies on the motion detection results provided by the model. Parameters in the Red Box: Mostly ineffective in this mode.

Parameters in the Yellow Box: Can be adjusted according to actual conditions.

- > Common image issues and debugging methods:
 - To addressing flickering noise in static areas, use a tool to read the luminance of the affected area. Increase the LUT table values for the corresponding luminance area. If noise persists, adjust the values in the Motion Det Noise LUT Chroma for the UV domain.
 - 2) To address increased ghosting when moving objects pass through dark areas, decrease the LUT values for dark areas until the ghosting is reduced and there is no significant flickering noise in the dark areas.

- 3) To address noticeable blockiness, where some areas have different denoising strength compared to surrounding areas, ensure the LUT table curve is smooth to minimize differences in motion detection across different luminance regions.
- 2. Adjusting temporal intensity:

In normal illumination, configure the TF Ratio Limit as shown in the figure below. Adjust the limit range from 0~255 to 16~255 or 32~255 to reduce temporal intensity and avoid ghosting.

Figure 3-151 Yuv3Dnr_TF

TF Ratio Lut can be configured as the following figure shows. The vertical axis represents the blending ratio between the current frame and the reference frame. Larger values indicate a higher proportion of the current frame, resulting in weaker temporal filtering. Horizontal axis represents the cumulative status score calculated from the Status Update LUT 0/1 tables. Larger values indicate a higher likelihood of being a static region. Horizontal axis (0-15) is from motion to static regions. The vertical axis of TF Ratio Lut is the blending ratio from motion to static regions, with larger values indicating a higher proportion of the current frame.

Figure 3-152 Yuv3Dnr_TF_Ratio_Lut

3. Adjusting spatial denoising:

Yuv3Dnr comprises of Yuv3Dnr and Y3DNR, with Yuv3Dnr consisting of SF0 and SF1, and Y3DNR consisting of SF2. Y3DNR can adjust the position of Sharpen in the PipeLine.

 SF0+SF1+Sharpen+SF2: Recommended for retaining details while controlling noise after sharpening.

- SF0+SF1+SF2+Sharpen: Recommended for cleaner noise processing with less impact from sharpening, though it may result in some detail loss.
- SF0: Reduces low-to-mid frequency noise.
 SF1: Handles high-frequency noise.
 SF2: Similar to SF1 but applied after the second temporal filtering, while SF1 is applied before the second temporal filtering, and SF0 is applied before the first temporal filtering. Debugging sequence: SF0 → SF2 → SF1
- 4. Debugging mode of Yuv3Dnr:
 - 1) echo $0 > /tmp/yuv3dnr_debug_mode_0$
 - 2) echo 1 > /tmp/yuv3dnr_debug_mode_0
 - 3) echo 2 > /tmp/yuv3dnr_debug_mode_0
 - 4) echo 3 > /tmp/yuv3dnr_debug_mode_0

(Normal image output)

(Motion mask)

(SF Guide mask)

(TF Guide mask)

In the image of debugging mode, white is the mask area, black is the non-mask area, gray is the transition area, and colored areas has no specific meaning. You only need to pay attention to the black/white/gray areas.

Figure 3-154 Yuv3Dnr_Debug_SF Guide mask

Figure 3-155 Yuv3Dnr_Debug_TF Guide mask

3.22 Yuv2DNr

3.22.1 Introduction

Yuv2DNr is used for the removal of luminance and chroma noise in the YUV domain.

3.22.2 Interface

3.22.3 Parameter

YUV_2DNR_YNR			
Parameter		Description	Range
Enable YNR	Enable switch for luminance noise reduction		01
Enable CNR	Enable switch for chrom	ia noise reduction	01
Working Mode	Manual/Auto	N	Manual/Auto
	Selection of reference va	lue type. This value determines the basis	
DefMada	for Ref Val in the Auto A	lgorithm Table.	
Rel Mode	When Ref Val is Lux, cu		
	When Ref Val is gain, cu	rrent parameters change with gain.	Lux/gain
Edit Auto			
Algorithm Table			
Algorithm Table	Allows editing of the aut	omatic parameter configuration table	
	Enable switch for lumina	ance noise reduction on specified colors.	
Specified Color	0: off; 1: on.		
YNR Enable	If Specified Color YNR	Enable is not turned on, all pixels use the	
	YNR strength of Color S	trength[0].	0 1
Reverse Select	Enable switch for applying luminance noise reduction to the		
	complementary color of	the specified color. 0: off; 1: on.	01
	LUT for YNR noise reduction strength. The larger the value, the		
VNP Lut	weaker the noise reduction		
	noise reduction. It is reco		
	the LUT table be the same	ne or have small differences.	0~2047
	Specifie	ed Color YNR Select	
	Skin	Preset data for skin color	/
0	Plants	Preset data for green plants	/
	License Plate(Blue)	Preset data for blue license plates	/
Presets	License Plate(Green)	Preset data for green license plates.	/
Color Center	The content volues of V/I	VV for the gradified professed color	
Y/U/V	The center values of 1/C	0~1023	
Y/U/V Range	The radius values of Y/U	J/V for the specified preferred color	0~511
	The range for the smooth	n transition zone of the preferred color	
	Y/U/V.		
V/U/V Smooth	If the pixel's Y/U/V valu		
	than the Y/U/V Range, it		
	smoothly to the non-pref	erred color area.	
	There are 8 levels of tran	sition smoothness: Level 0 to Level 7.	0~7

	Color Strength[0]: YNR strength. It is recommended to set this value to 255	
Color Strength	Color Strength[1]: CNR strength When preferred color noise	
	reduction is not used, it is recommended to set this value to 0.	0~255
	YUV 2DNR CNR	
Working Mode	Manual/Auto	Manual/Auto
	Selection of reference value type. This value affects the Ref Val in the	
DefMada	Auto Algorithm Table.	
Kel Mode	Lux: Parameters change with illumination.	
	Gain: Parameters change with gain.	/
Edit Auto		
Algorithm	Allows editing of the automatic parameter configuration table	
Table	\sim	/
	Chroma noise reduction strength parameter. The larger the value, the	
	stronger the chroma noise reduction; the smaller the value, the	
CNR Strength	weaker the chroma noise reduction.	0~16
	LUT for chroma noise reduction based on different luminance levels.	
	The horizontal axis represents the Luma value, and the vertical axis	
	represents the chroma noise intensity. The larger the value, the	
	weaker the chroma noise reduction; the smaller the value, the	
CNR Lut	stronger the chroma noise reduction.	0~2047

3.22.4 Debugging Steps

YUV2DNR is divided into two parts: YNR and CNR, which can be adjusted separately.

- 1、YNR Tuning:
 - Adjusts YNR noise strength LUT. Horizontal axis is the luminance, and vertical axis is the noise intensity. Larger values result in weaker noise reduction, while smaller values result in stronger noise reduction. It is recommended to set similar or close values across the LUT to avoid uneven noise reduction transitions at different luminance levels.
 - 2) Special Color YNR Noise Reduction:
 - Enable Special Color YNR feature.
 - Set preferred colors in Special Color YNR Setting. Use preset data for skin tones, green plants, blue license plates, and green license plates as needed. Refer to Figure 3-120 for

blue license plates.

After setting the desired color, adjust the Color Strength parameter accordingly, as shown in Figure 3-121.

Figure 3-158 Specified Color YNR Select

Figure 3-159 Specified Color YNR Select

- 2、CNR Tuning:
 - Adjusts CNR Strength and LUT. Horizontal axis is the luminance, and vertical axis is the noise intensity. Larger values result in weaker noise reduction, while smaller values result in stronger noise reduction. It is recommended to set similar or close values across the LUT to avoid uneven noise reduction transitions at different luminance levels.
 - It is recommended to set the CNR strength, targeted at high-frequency chroma noise, higher to effectively reduce chroma noise.

3.23 Sharpen

3.23.1 Introduction

The Sharpen module enhances image clarity by sharpening or smoothing edges. It allows for independent sharpening of directional edges and non-directional texture details. The module supports adjusting the sharpening strength based on pixel luminance and separately for motion and static regions. Additionally, it supports independent control of overshoot and undershoot for motion/static regions and coring based on noise intensity. By adjusting the areas and frequency bands to be enhanced, various clarity enhancement styles can be achieved.

3.23.2 Interface

3.23.3 Parameter

Parameter	Description	Range
Enable Sharpen	Function switch, check to enable	0.1

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

Working Mode	Auto/manu	al working mode selection	Auto/Manual
Ref Mode	Automate p	Automate parameters based on Lux/Gain, distinguishing each level	
Edit Auto	Edit the au	Edit the automatic algorithm parameter configuration	
Algorithm Table	table	table	
			High: 0~48
		Represents a base frequency band. Setting it	Medium: 0~80
	B Sigma	to 0 means full pass.	Low: 0~96
		Represents a delta frequency band. A value	
		of 1 indicates moving one sigma towards the	
High/Medium/Low	D Sigma	lower frequency band from the base band.	
Freq	0	Smaller Sigma: Sharper edges.□	
1		Larger Sigma: Softer edges.	0~255
		Filter strength. The larger the value, the	
		greater the weight of the corresponding	
		frequency band. Default is 128 (100%)	
	Scale	strength).	0~128
	Sharpening	intensity limits to restrict the maximum	
	sharpening strength.		
Shp Limit[0][1]	Shp Limit	0]: Black edge sharpening intensity limit.	[0]: -4096~0
	Shp Limit	1]: White edge sharpening intensity limit.	[1]: 0~4095
	The larger	the value, the more pronounced the	
	black/white	edges.	
Shp Gain[0][1]	Shp Gain[0]: Black edge sharpening strength.□		[0]: 16~255
	Shp Gain[1]: White edge sharpening strength.		[1]: 16~255
	Overshoot	limit for static regions. Larger values mean	
Static	stronger lin	nits, resulting in weaker black/white edges.	
OS_Limit[0][1]	OS_Limit[0]: Black edge limit value.	[0]: 0~127
	OS_Limit[1]: White edge limit value.	[1]: 0~127
	Overshoot	strength for static regions. Larger values	
Static	mean stron	ger black/white edges.	
OS_Gain[0][1]	OS_Gain[0]: Black edge overshoot strength.	[0]: 0~8
	OS_Gain[1]: White edge overshoot strength.	[1]: 0~8
	Overshoot	limit for motion regions. Larger values mean	
Motion	stronger lin	nits, resulting in weaker black/white edges.	
OS_Limit[0][1]	OS_Limit[0]: Black edge limit value.	[0]: 0~127
	OS Limit	1]: White edge limit value.	[1]: 0~127

	Overshoot strength for motion regions. Larger values			
Motion	mean stronger black/white edges.			
OS_Gain[0][1]	OS_Gain[0]: Black edge overshoot strength.	[0]: 0~8		
	OS_Gain[1]: White edge overshoot strength.	[1]: 0~8		
Luma Mask Lut	Adjust Mask LUT based on Luma to modify the			
	sharpening effect at different luminance levels.	0~255		
Derectional Shn		2		
	Adjust directional sharpening weight based on Luma.	. 7		
weight Lut	The larger the value, the stronger the sharpening effect.	0~255		
- D 1. 1 V				
Recommended V	alues for Bsigma and Dsigma:			
High-frequency Bsign	na: 8 ~ 16, Dsigma: 16 ± 4			
Mid-frequency Bsigma: $24 \sim 36$, Dsigma: 36 ± 8				
Low-frequency Bsigma: $26 \sim 42$, Dsigma: 52 ± 12				
Parameter Adjustment Effect				

Parameter Adjustment Effect

Taking MF adjustment for example. In the left image, Bsigma is 28 and Dsigma is 32. This \geq configuration tends to sharpen smaller detail textures. In the right image, Bsigma is 40 and Dsigma is 32. This configuration tends to sharpen larger texture edges.

Figure 3-161 Bsigma\Dsigma Effect

Taking LF adjustment for example. In the left image, Shp Gain[0][1] is 20, 20; in the right image, \geq Shp Gain[0][1] is 120, 120. The strength of black and white edges is weaker compared to the right

image.

Figure 3-163 Col	or Target Setting
------------------	-------------------

Color Target Setting			
Parameter	Description	Range	
Enable	Switch to enable.	0.1	
Color Target Mask Index	Select the Color Mask index. Each index corresponds to a specific color of interest to be set separately.	0/1/2/3	
Color io Flag	In: Select this color. Out: Invert the selection of this color.	in/out	

Color Select	Select the color range by framing it.			
	The center of the color to be sharpened			
Color Contor	separately, such as skin tone or green plants.			
Color Center	It is recommended to select this using the			
	framing tool rather than setting it manually.	0~1023	0~511	0~511
	The effective color range. It is recommended			
Color Range	to select this by using the framing tool rather		S 1	
	than setting it manually.	0~511	0~511	0~511
	The transition range. It is recommended to		2	
Color Smooth	select this using the framing tool rather than	.6		
	setting it manually.	0~7	0~7	0~7
Color Target Upper				
Limit	The upper limit of the color value.	0~128		

Parameter Adjustment Effect

The effect of weakening the sharpening for skin tones and enhancing the sharpening for green plants is shown in the figure below.

Figure 3-164 Sharpen _Color Skin Tone Sharpening Effect

Figure 3-165 Sharpen _Color Green Plant Sharpening Effect

Figure 3-166 Shp Core Control Setting

Shp Core Control Setting			
Parameter	Description	Range	
High/Medium/Low/Dir Freq	Switch to enable		
Enable	Switch to chable.	0.1	
Motion Mask Enable	Toggle for motion mask	0.1	

	Adjust sharpening strength based on	
Motion Gain Lut	motion. The larger the value, the stronger	
	the sharpening effect.	[-128, -127]
Luma Mask Enable	Toggle for brightness mask	0.1
	Adjust sharpening strength based on	
Luma Gain Lut	brightness. The larger the value, the	
	stronger the sharpening effect.	[-128, -127]
	Toggle for enabling texture region	G
Texture Mask Enable	masking	0.1
	Sharpening strength curve for static	2
Static Texture Gain Lut	texture regions. The larger the value, the	
	stronger the sharpening effect.	[-128, -127]
	Sharpening strength curve for motion	
Motion Texture Gain Lut	texture regions. The larger the value, the	*
	stronger the sharpening effect.	[-128, -127]
Color And NPU Mask Enable	Toggle for enabling color mask.	0.1
	Four index groups for adjusting	
	sharpening intensity based on color. The	
Color And NPU Gain Lut	larger the value, the stronger the	
	sharpening effect.	[-128, -127]
	Base sharpening strength. The larger the	
	value, the stronger the sharpening effect.	
	Example: A value of 0 represents a gain	
	of $2^0 = 1x$ Gain. \Box	
Base Gain	The first value is for black edge	
0	strength.□	
	The second value is for white edge	
	strength.	[-256, 255]
	Limits the sharpening intensity. The	
	larger the value, the stronger the	
	sharpening effect.	
Gain Limit	The first value is the lower limit for	
	sharpening intensity.	
	The second value is the upper limit for	
	sharpening intensity.	[0, 255]
	Used to limit high-frequency noise and	
Coming Dags Colin	handle horizontal/vertical stripes or flat	
Coring Base Gain	region grid noise. Affects high-frequency	
	clarity; use with caution.	[0, 15]

	Affects edge detection. Smaller values	
Coring Slope	detect more edges, while larger values	
	detect fewer edges.	[0, 15]
	Compensation for edge detection	
Coring Offset	judgment, used in conjunction with	
	Coring Slope to adjust edge strength.	[0, 63]
	Ensures a minimum global sharpening	
	intensity. Larger values result in a higher	
Shp Limit	minimum sharpening intensity. \Box	× 7
	The first value is for black edge limit. \Box	
	The second value is for white edge limit.	[0, 1023]
	Black and white edge limit for preventing	
OS Limit	overshoot.	
OS Ellint	The first value is for black edge limit.□	•
	The second value is for white edge limit.	[0, 127]
	Overshoot strength for black and white	
	edges. Larger values result in stronger	
	black and white edges.	
OS Gain	The first value is for black edge	
	strength.	
	The second value is for white edge	
	strength.	[0, 8]

> Before and after motion sharpening is enabled:

Figure 3-167 Motion Ctrl Effect

 ISPTuning - V1.23.53.1 AX620E [192.168.1.20:8082]
 File Tool Heln ଜ 🌲 🚻 🖻 🛎 🗟 🖸 pipe 0 🗸 🗸 📲 📑 🧱 🕥 🏰 🔛 🖂 Instant Preview To Set1 To Set2 Sensor
Image
Registe
Scene
Ae
AeStat
AwbSt
Af
AfStat
Dec Z Enable Sha Forking Mode Manual Ref 1 Edit Auto Algorithm Tabl || || || Dpc
Blc
Hdr
AiNr
Raw2D
Lsc
Rltm
Demositive
DePurp
CC
2dLut Motion Gain Lut ÷ ÷ 100 2dLut
Gammi
Dehaze
Csc
CA
Clp
Yuv2Df
Yuv2Df
Yuv3Di
Chunga ÷ or And NPU Gain Lut 2 Color And NPU Gain Lut 3 Texture Gain Lu ł ł ē

Figure 3-168 Texture Enhance

Texture Enhance			
Parameter	Description	Range	
Grain Noise Enable	Enable switch. Recommended not to enable.	0.1	
Motion Mask Enable		0.1	
Luma Mask Enable		0.1	
Texture Mask Enable		0.1	
Color And NPU Mask Enable		0.1	
Grain Noise Base Gain	Grain noise strength	[-256, 255]	
Motion Gain Lut	Motion-sharpening gain curve	[-128, 127]	
Luma Gain Lut	Brightness-sharpening gain curve	[-128, 127]	
Texture Gain Lut	Texture-sharpening gain curve	[-128, 127]	
Color And NPU Gain Lut 0 - 3	Color/NPU-sharpening curve	[-128, 127]	

Texture Enhance is used to add noise to the image. It is not recommended to enable this feature as it can degrade image quality.

Sharpen Debug

- \blacktriangleright echo CODE > /tmp/shp_debug_mode_0
- Example: Use the command "echo 5 > /tmp/shp_debug_mode_0" to enable the Sharpen Debug

feature. After inputting this command, click "write" in the Sharpen interface to display the Debug image.

NORMAL = 0	Close debugging and output a normal image
GRAIN = 3	Show grain noise
HF = 4	Show details after all four sharpening cores with various gain/LUT/OS controls and overlays
MOTION = 5	Show the motion mask
LUMA = 6	Show the luma mask
NOISEY = 7	Show noise level
CLNP0 = 8	Show color mask 0
CLNP1 = 9	Show color mask 1
CLNP2 = 10	Show color mask 2
CLNP3 = 11	Show color mask 3
TEXTURE3 = 12	Show texture information detected in the HF window
TEXTURE5 = 13	Show texture information detected in the MF window
TEXTURE7 = 14	Show texture information detected in the LF window
DIRCONF = 15	Show edge information, which is also the blend coefficient with MF
SGC3 = 24	Show HF gain map,
At	indicating which areas have gain suppressed or enhanced (e.g., dark areas, flat areas, color target areas)
SGC5 = 25	Show MF gain map
SGD5 = 26	Show DF gain map
SGC7 = 27	Show LF gain map
HFC3 = 28	HF detail map

HFC5 = 29	MF detail map
HFD5 = 30	DF detail map
HFC7 = 31	LF detail map

Do not rely solely on Debug mode to judge high, medium, directional, and low-frequency P sharpening. Use the actual image effect as the primary basis for tuning and Debug mode as an auxiliary reference to understand how changes affect the image.

3.23.4 Auto mode

In Auto mode, all Sharpen parameters will be linked with gain/Lux. The strength of various Sharpen parameters will change accordingly with gain/Lux.

Debugging Steps 3.23.5

Sharpen Tuning
- Enable sharpening by turning on shp_enable. Disable all masks: motion, texture, luma, and color.
- 2) Set static/motion overshoot gain and overshoot gain for each frequency band to 0.
- 3) Set global shp_gain to 16 (1x gain), global shp_limit to (-4096, 4095), base gain for each frequency band to 0, and gain limit for each frequency band to 255. (Note: Base gain is represented in logarithmic form; 0 means $2^{0.0} = 1x$ gain, 32 means $2^{1.0} = 2x$ gain, etc.)
- Adjust high, medium, and low-frequency b sigma and d sigma. Use the sharpen debug command to fine-tune the details filtered by each frequency band. Remember: the larger b sigma + d sigma, the coarser the detected edges.
- 5) Adjust the base gain to meet the sharpening requirements for each frequency band. Noise in the image might be significant at this stage; you can address this later.
 - a) Enable luma mask and set luma gain LUT if you need to adjust sharpening intensity for specific luminance regions.
 - b) Enable texture mask and set static texture gain LUT/motion texture gain LUT if different sharpening intensities are needed for different texture strength regions.
 - c) Set motion LUT to 0 initially. Adjust static texture gain LUT first, then adjust motion texture gain LUT. Ensure the motion LUT does not differ significantly from the static LUT.
 - d) Enable motion mask and set motion gain LUT if separate sharpening intensity for motion areas is needed.
 - e) Enable color and NPU mask and set corresponding LUTs for different colors and NPU mask regions.
- 6) Adjust gain limits for each frequency band to avoid overexposure or underexposure in image edges.
- 7) Adjust overshoot limits and gains for each frequency band to keep edge overshoot within acceptable limits.

you are on notice that any distribution of this information, in any form, is strictly prohibited.

 Adjust coring base gain, coring slope, and coring offset to reduce the sharpening effect on noise. Note: This adjustment may weaken the sharpening of weak textures. You can use texture gain LUT to compensate.

- 9) Adjust directional shp weight LUT to control the blend ratio between edge directional sharpening (dir freq) and uniform sharpening across high, medium, and low frequencies.
- 10) Adjust global shp gain and shp limit to increase or decrease the overall sharpening intensity and amplitude.
- 11) (Optional) Adjust shoot control for static and motion areas separately. Relax shoot limits for motion areas to enhance black and white edges and improve perceived sharpness.

Detail Enhancement Tuning (Optional)

Adjusts Grain Noise Base Gain to fine-tune the clarity and uniformity of image details and noise. It is generally not recommended to enable this feature. r Foll

3.24 CCMP

3.24.1 Introduction

.: is desig CCMP (Chroma Compensation) module is designed to correct color effects or adjust color preferences in the image.

3.24.2 Interface

Figure 3-170 CCMP

3.24.3 Parameter

Parameter	Description	Range
Enable CCMP	CCMP enable	/
Working Mode	Manual/Auto	/
Ref Mode	Lux/Gain	/
Edit Auto Algorithm Table	Automatic clgorithm configuration table	/
Y Lut	Adjusts saturation based on brightness.Horizontal axis is luminance, and vertical axis is saturation.	0~512
Sat Lut	Adjusts saturation based on saturation.Both horizontal and vertical axises represent saturation.	0~512

Note: The horizontal axis intervals of Y Lut Ratio/Sat Lut Ratio are not evenly distributed. There is a higher density of control points in dark, bright, and low saturation areas, while other areas have a lower density of control points.

3.24.4 Debugging Recommendation

This module allows for the reduction of saturation using either luminance or saturation \geq adjustments. The method chosen depends on the specific scenario or the yous preference. Value of 512 represents 1x, meaning no saturation reduction; while value of 0 represents complete saturation reduction to 0. To reduce color noise, use saturation \rightarrow saturation. To adjust the SR MSSt2 brightness and saturation style, use luma \rightarrow saturation.

3.24.5 Auto mode

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- Ref Mode \triangleright
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref Val in the Auto Algorithm Table.
 - Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.
- Ref Val \triangleright
 - Displays the current numerical value of Ref Val.

0 1 2 3 4 5 6 7 8 9 ef Value 1024 2048 4096 8192 15384 32768 65536 131072 262144 524288 Lut Edit Y Lut Y Lut Y Lut Y Z Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0	1										Impor
Lut Edit V Lut Edit Sat Lut E		24	2048	2 4096	3 8192	4 16384	5 32768	6	7 131072	8 262144	9 524288	10 1048576	11 2097152
rt Lut Edit Sat Lu		Edit Y Lut	Edit Y Lut										
Figure 3-171 CCMP Auto Table		Edit Sat Lut	Edit Sat Lut										
.25 SCM	5	SC	ĊM			Figure	3-171	CCMP	Auto Ta	ıble	10	50	<u>C</u>

3.25 SCM

3.25.1 Introduction

SCM (Special Color Mapping) is used to correct color effects or adjust color preferences by replacing specific YUV colors with other colors. Colors within a defined range in the YUV space will be completely replaced by the target color. Colors near the boundary of the defined range will be partially modified based on a gradient attenuation. If you need to tune the SCM, use the Color Select ine the A tool in the Sharpen module to determine the YUV values and the range of colors that need to be modified.

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

3.25.2 Interface

Parameter	Description	Range
Enable SCM	Toggle switch for the SCM feature	/
Working Mode	Manual/Auto	/
In Flag	In	/
10 Flag	Out: Inverted selection	/
Ref Mode	Lux/Gain	/
Edit Auto Algorithm Table	Configure auto parameter table	/
	Center[0]: Grayscale value of the pixel to be replaced	0~1023
Center	Center[1]: Color value of the pixel to be replaced	-512~511
	Center[2]: Color value of the pixel to be replaced	-512~511
	Radius[0]: Influence range of the grayscale value to be	
Dadius	replaced	0~511
Raulus	Radius[1]: Influence range of the color value to be	
	replaced	0~511

Parameter	Description	Range
	Radius[2]: Influence range of the color value to be	
	replaced	0~511
Parameter Smooth Target Color	Smooth[0]: Smoothing strength for the grayscale value	
	influence range	0~7
	Smooth[1]: Smoothing strength for the color value	
Smooth	mooth Smooth[0]: Smoothing strength for the grayscale value influence range Smooth[1]: Smoothing strength for the color value influence range Smooth[2]: Smoothing strength for the color value influence range	0~7
Smooth Target Color	Smooth[2]: Smoothing strength for the color value	Y.
	influence range	0~7
	Target Color[0]: Target color (U value) for the replaced	
Target Color	pixel	-512~511
Target Color	Target Color[1]: Target color (V value) for the replaced	
	pixel	-512~511

3.25.4 Debugging Recommendation

Determine the desired UV values for the target color. For instance, if you want to convert the colors in dark, low-saturation areas to 0, set the target UV values to 0. Gradually increase the center YUV values until you effectively reduce the saturation in the dark, low-saturation regions to 0.

3.25.5 Auto mode

Parameter Description

- Working Mode
 - Description: Switches between auto/manual mode
 - Parameter
 - Manual: In manual mode, parameters can be freely adjusted.
 - Auto: In automatic mode, parameters are adjusted based on gain/luminance as reference values.
- ➢ Ref Mode
 - Choice of reference value type for the automatic strategy, which affects the meaning of Ref

Val in the Auto Algorithm Table.

- Parameter
 - Lux: In this mode, Ref Val in the Auto Algorithm Table is actually the Lux value. This parameter changes with the illuminance.
 - Gain: In this mode, Ref Val in the Auto Algorithm Table is actually the gain. This parameter changes with the gain.

Displays the current numerical value of Ref Val.

3.26 YCProc

3.26.1 Introduction

The YCProc module includes two sub-modules: Ycrt and YC Proc.

- Ycrt Sub-module configures the output luminance and chroma data range in the YUV domain to adapt to the encoding format. Compared to the CSC module, Ycrt can preserve more information during early processing stages. If luminance and chroma data range processing (limit range) is needed, it is recommended to use the Ycrt module and set the CSC module to full range.
- YC Proc sub-module provides basic image adjustment functions including global adjustments of brightness, saturation, contrast, and hue.

O ISPTuning - V1.23.53.1 AX620E [192.168.1.169:8082] File Tool Help ଜ 🌲 🚻 🖂 🛎 😪 🖸 pipe (~ 📲 📑 🧱 🕲 🥵 😭 🖬 🗹 Instant Preview Sensor Image Register Scene Ae AeStat Awb AwbStat Af To Set1 To Set2 Load Set1 Load Set2 CONF CONT 🗹 Enable Ycrt Signal Range Mode Input Y Range 1023 Input UV Range 992 Output Y Range 1023 Output UV Range AfStat Arsta Dpc Blc Hdr AiNr Y Clip Level 1023 511 UV Clip Level Enable YC Pro AllNr Raw2DNr Lsc Rltm Demosaic DePurple CC CC Brightness 256 Contrast Saturation 4096 Hue 2dLut 2dLut Gamma Dehaze Csc CA Clp Yuv2DNr Yuv3DNr Sharpen Ccmp Scm Scm YCProc Nuc LDC Figure 3-174 YCProc

3.26.2 Interface

3.26.3 Parameter

Parameter	Description	Range
Enable Ycrt	YCRT enable	0 1
	full range	0 1 / /
Signal Range Mode	limit range	/
	custom	/

Parameter	Description	Range
Input Y Range	Input Y Range[0]: Input grayscale range	0~1023
	Input Y Range[1]: Input grayscale range	0~1023
	Input UV Range[0]: Input color value range	0~1023
Input UV Range	Input UV Range[1]: Input color value range	0~1023
Output Y Range	Output Y Range[0]: Output grayscale range	0~1023
	Output Y Range[1]: Output grayscale range	0~1023
Output UV Range	Output Y Range[0]: Output color value range	0~1023
Output UV Range	Output Y Range[1]: Output color value range	0~1023
V Clin I evel	Y Clip Level[0]: Clipping level for grayscale values	0~1023
	Y Clip Level[1]: Clipping level for grayscale values	0~1023
	UV Clip Level[0]: Clipping level for color values	-512~511
UV Clip Level	UV Clip Level[1]: Clipping level for color values	-512~511
Enable YC Proc	YCRT enable	0 1
Brightness	Overall brightness adjustment in the YUV domain	0~4095
Contrast	Global contrast adjustment in the YUV domain	-4096~4095
Saturation	Global saturation adjustment in the YUV domain	0~65535
Hue	Global hue adjustment in the YUV domain	-32768~32767

Signal Range Mode:

- When "limit range" and "full range" are selected, the "input Y range", "input UV Range",
 "Output Y range", and "Output UV range" are in read-only state, displaying values corresponding to the selected mode.
- When "custom" is selected, the "input Y range", "input UV Range", "Output Y range", and "Output UV range" are in editable state, allowing users to define custom output numerical ranges.

3.27 DIS

3.27.1 Introduction

DIS (Digital Image Stabilization) involves calculating motion compensation vectors based on global movement to correct the position of the image, thereby eliminating or reducing the impact of random camera shakes on the image sequence, and achieving stable video images.

227 / 234

The information contained in this Documentation may be privileged and confidential. If the reader of this information is not intended recipient, you are on notice that any distribution of this information, in any form, is strictly prohibited.

3.27.3 Parameter

Parameter	Description	Range
Enable DIS	DIS enable switch.	
DIS Type	0: DIS_TYPE_V1	\
SW Calc	Software calibration enable switch	\
Dolov Fromo Num	Displays effect after a delay corresponding to the frame	X
Delay Flame Num	rate	0~15
History Frame Num	Number of historical frames involved in smoothing	1~16
Crop Ratio	Proportion of the image frame retained	
	(crop_ratio/255.f)	127~255
Sad Threshold	Offset threshold	0~4294967295
	Distribution of weight for historical frame positions; 0	
From Dog Woights	corresponds to the current (t) frame, 1 to t-1 frame 15	
Frame Fos weights	to t-15 frame, with a maximum configuration of weight	
	distribution across 16 historical frames.	0~255
3.27.4 Debuggi 1. Select DIS Type V1.	ng Steps	

3.27.4 Debugging Steps

2. Do not enable the SW Calc switch; use the default setting.

3. Set Delay Frame Num to 0 for immediate effect; delay is recommended to be set to 0 for instant effect.

4. Set History Frame Num to 8 for smooth performance without obvious jelly effect; the higher the value, the more pronounced the jelly effect.

5. Set Crop Ratio to 205~245, retaining 80%~95% of the image frame; the smaller the value, the less of the image frame is retained.

6. Sad Threshold has no effect; maintain the default value.

7. It is recommended to use equal Frame Pos Weights, i.e., all set to 1, for smoother stabilization convergence.

3.28 ME

3.28.1 Introduction

The ME module primarily functions as a statistical feature developed for Electronic Image Stabilization (EIS).

Figure 3-176 DIS Functional Principle

3.28.2 Interface

ISPTuning - V1.24.1.1 AX620E [192.1	168.10.60:8082]			– a ×
File Tool Help 슈오래 문제 48 도미 e6	p			
File Tool Help Ch 20 H Image 20 Image 0	5 To Seti To Seti E E E E E E E To Seti To Seti E E E E E E E E E E E E E E E E E E E	3 4 24 22 104 112 144 192 184 222	1.1	Stack-
20lut Camma Dehaze Gamma CA Gamma CA Ga G CA Gp Vux2DNr Vux2DNr Vux2DNr Vux2DNr Scm Scm Crmp Scm VCYroc LDC DIS ME	Ingurt Expurt Scale Antio Projection Shift Bit Projection V Projection V Rei Bagion Stor H Rei Bagion Stor H Search Range	0 4 32	200 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 3 30 80 80 80 80 80 80 80 80 80 8
3.28.3	Parameter		FMMUM	0
Pa	rameter		Description	Range

3.28.3 Parameter

Parameter	Description	Range
Enable ME	Switch to enable.	[0, 1]
Enchlo ME Lut	Brightens the Y channel of the image, making it	
	easier to determine motion	[0, 1023]
Scala Patia	Determines the scaling proportion; the smaller the	
Scale Ratio	value, the smaller the image size	[0, 2]
Scale Ratio value, the smaller the image size Prevents overflow in the horizontal/vertical direction, which can lead to inaccurate statistics after an overflow. If 4096 × grid_num = 1, then shiftbit = 4		
	which can lead to inaccurate statistics after an	
	overflow.	
	If $4096 \times \text{grid}_\text{num} = 1$, then shiftbit = 4	
Draination Shift Dit	If $4096 \times \text{grid}_\text{num} = 2$, then shiftbit = 2	
Fiojection Shift Bit	If $4096 \times \text{grid}_\text{num} = 1$.	
	If scale_ratio > 0, we can subtract "scale_ratio" from	
	the numbers above.	
	For example, input=4096, grid_num=2, and	
	scale_ratio=2,	[0, 4]

	then shiftbit = $2 - 2 = 0$	
Roi Offset H		[0, 4096]
Roi Offset V	The starting point coordinate of ROI	[0, 2160]
Poi Pagion Num H	Number of horizontal grid cells in the ROI being	
Koi Kegioli Nulli H	analyzed	[1, 5]
Roi Region Num V	Number of vertical grid cells in the ROI being	
Koi Kegioli Nulli v	analyzed	[1, 5]
Roi Region Size H	Width of each grid cell in the ROI	[256, 4096]
Roi Region Size V	Width of each grid cell in the ROI	[256, 4096]
Sourch Dango	Width of the search area, with the actual area	-
Search Kange	analyzed being the ROI plus the search area.	[0, 256]
3.28.4 Debugging	Steps	

3.28.4 Debugging Steps

1. Keep Enable ME Lut in default linear mode.

2. If the image noise is significant, consider increasing the Scale Ratio to use smaller images for statistical analysis of pixel phase differences.

3. Under normal circumstances, using the default parameters is sufficient.

3.29 Nuc

3.29.1 Introduction

The NUC module performs nonlinear correction on images in the Raw domain to prevent "ghosting" in the output images due to varying light response rates of sensor elements. It is primarily used for thermal imaging sensors.

The NUC module consists of two parts:

- Module Mode 0: An NUC adaptive calibration program used to obtain appropriate NUC configurations for the sensor.
- Module Mode 1: Outputs an image with two-point linear correction and fixed pattern noise • correction (FPN integration).

3.29.2 Interface

e (~	1 🗗 📰 🐺 🕚	🚳 😭 🕨 🗹 Instant Preview		
or ^	To Set1 To Set2 Load Set1 Load	Set2		
	Enable NUC			
er	Module Mode	NUC	4	
	NUC Calibration			
t	🗌 Initialization Enable 🗌 Step Enhan	ce Enable		
	NUC Proc Flag Coarse		×	
tat	Nuc Effective Bits	7	Nuc Adjust Trend	
	Fine Adjust Bit Wask	15	Coarse Adjust Bit Mask	
	Fine Adjust Init Value	0	Course Adjust Init Value	
	Fine adjust Torrest With	AFFOF	Course salues Traces With	
	Fine adjust farget nigh	00000		
	Fine Adjust Target Lov	65535	Coarse Adjust Target Low	
Nr	Fine Adjust Step	17	Coarse Adjust Step	
	Fine Adjust Max Value	17	Coarse Adjust Max Value	
aic	Fine Adjust Min Value	0	Coarse Adjust Min Value	
ble	Fine Adjust Max Frames	1	Coarse Adjust Max Frames	
	FPN Calibration			
	FFN Enable			
a P	Base Gain	256 1.0000	FPN Gain 256 1.0000	
Nr				
n				
		· · · · · · · · · · · · · · · · · · ·		

Figure 3-177 Nuc

3.29.3 Parameter

Parameter	Description	Range
Enable NUC	NUC enable switch.	\
Madula Mada	NUC mode	\
Module Mode	FPN mode	\
Initialization Enable	Initialization enable switch	\
Step Enhance Enable	Step enhancement switch	\
Nue Pres Flag	Coarse (coarse adjustment)	\
Nuc Floc Flag	Fine (fine adjustment)	\
Nuc Effective Bits	NUC effective bit	0~7
Nuc Adjust Trend	NUC adjustment tendency	0~1
Fine/Coarse Adjust Bit Mask	Bit mask for fine/coarse adjustment	0~255
Fine/Coarse Adjust Init Value	Initial value for fine/coarse adjustment	0~255
Fine/Coarse Adjust Target High	High target value for fine/coarse adjustment	0~65535
Fine/Coarse Adjust Target Low	Low target value for fine/coarse adjustment	0~65535

AX Image Online Debugging Guide

Fine /CoarseAdjust Step	Adjustment step for fine/coarse tuning	0~255
Fine/Coarse Adjust Max Value	Maximum value for fine/coarse adjustment	0~255
Fine/Coarse Adjust Min Value	Minimum value for fine/coarse adjustment	0~255
Fine /CoarseAdjust Max Frames	Maximum frame rate for fine/coarse adjustment	0~65535
FPN Enable	FPN enable switch.	0~4095
Base Gain	Basic gain	0~4095

 Note: NUC mode and FPN Calibration mode are mutually exclusive. When the NUC Proc Flag is set to Fine, interfaces related to Coarse cannot be set.

3.29.4 Debugging Steps

NUC Debugging Steps

1. NUC correction requires setting the Nuc Proc Flag to determine coarse or fine adjustment, which correspond to different bit positions in the Sensor Nuc register. These bit positions can be set using the Fine/Coarse Adjust Bit Mask. During full range adjustment, any adjustment mode can be chosen, and the corresponding registers configured. For example, set all coarse adjustment-related registers according to full range and configure the c_bit_mask to 0xFF.

2. Configure the nuc_flag register to align the NUC adjustment trend with the sensor. If a larger nuc value results in a larger output, set nuc_adjust_trend to 0; otherwise, set it to 1.

3. Adjust the step register to quickly converge the nuc value.

4. Adjust the nuc_fcnt / nuc_ccnt registers to set the target iteration frame number.

5. Before starting the sensor nuc value correction, set cfg_lst_frame to 1 for initialization. If necessary, enable step_enhance_enable to improve convergence accuracy.

3.30 CLP

3.30.1 Introduction

The CLP (Color Palette) module is a color palette for thermal imaging sensors, providing you with specific palettes to colorize grayscale images output by thermal sensors.

3.30.2 Interface

Hi 🗠 🌣		~{																		
C ~		-2	5		5	\odot	AT S		🗹 Instan	t Preview	٧									
r	^	To Set1	To Set:	2 Loa	d Set1	Load S	et2													
ter		Enable CLP																		
		Propert Cala	n Pelot				hat												1	
		V-Lue I	r raie	V-last			100													
¢		I-Lut (J-Lut	-Luc																
at			0	1	2	3	4	5	^								-)	
		0 - 9	128	128	128	128	128	128					_		V-Lut				<i>y</i>	
		10 - 19	128	128	128	128	128	128	1		250 -						X /			
		20 - 29	128	128	128	128	128	128												
		30 - 39	128	128	128	128	128	128			200									
		40 - 49	128	128	128	128	128	128			200									
		50 - 59	128	128	128	128	128	128												
INF		60 - 69	128	128	128	128	128	128			150 -									
		70 - 79	128	128	128	128	128	128	1		• •	•	• •	 • •		• •	 • •	•		
aic		00.00	120	120	120	120	120	120			100									
ole		00 00	120	120	120	120	120	120												
		90 - 99	120	120	120	120	120	120												
		100 - 109	128	128	128	128	128	128			50									
3		110 - 119	128	128	128	128	128	128												
		120 - 129	128	128	128	128	128	128	1		0			 						
		130 - 139	128	128	128	128	128	128	1		0		50	100	• •	150	200		250	
		<							•						\sim					
Nr		_																		
Nr -		Inport	Exp	port														c	Control Poin	ts 17
n																				
													\sim	X						

Figure 3-178 CLP Interface

3.30.3 Parameter

Parameter	Description	Range
Enable CLP	CLP enable switch.	0 1
Preset Color Palette	Preset color palette mode (hot/cool/iet/turbo/parula/autump/winter/customized)	\ \
Y/U/V-Lut	Y/U/V 3-ch Lut	0~256

The CLP is primarily used in thermal imaging modes and does not need to be enabled in non-thermal imaging modes.